Citation: H. B. Hassan, Z. Abdel Hamid, Rabab M. El-Sherif. Electrooxidation of methanol and ethanol on carbon electrodeposited Ni-MgO nanocomposite[J]. Chinese Journal of Catalysis, ;2016, 37(4): 616-627. doi: 10.1016/S1872-2067(15)61034-8 shu

Electrooxidation of methanol and ethanol on carbon electrodeposited Ni-MgO nanocomposite

  • Corresponding author: H. B. Hassan,  Z. Abdel Hamid, 
  • Received Date: 6 October 2015
    Available Online: 22 December 2015

  • Ni-MgO nano-composites were prepared on carbon anodes by electrodeposition from a nickel Watts bath in the presence of fine MgO reinforcement particles. Their performance as electrocatalysts for the oxidation of methanol and ethanol in alkaline medium was investigated and compared with that of carbon coated pure Ni (Ni/C). The chemical composition, phase structure, and surface morphology of the deposited nano-composites were studied by energy dispersive X-ray spectroscopy, X-ray diffractometry, and scanning electron microscopy, respectively. Different electrochemical techniques were used to estimate the catalytic activity of the prepared electrocatalyst anodes, including cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy (EIS). The Ni/C electrocatalyst alone exhibited remarkably low catalytic activity and poor stability toward the electrooxidation process. The inclusion of MgO significantly promoted the catalytic activity of the Ni catalyst for the alcohol electrooxidation and enhanced its poisoning resistance. The EIS results confirmed those of CV and revealed a lower charge transfer resistance and enhanced roughness for the Ni-MgO/C nano-composite electrodes compared with those of Ni/C.
  • 加载中
    1. [1]

      [1] J. C. Amphlett, B. A. Peppley, E. Halliop, A. Sadiq, J. Power Sources, 2001, 96, 204-213.

    2. [2]

      [2] V. M. Barragan, A. Heinzel, J. Power Sources, 2002, 104, 66-72.

    3. [3]

      [3] V. Comignani, J. M. Sieben, M. E. Brigante, M. M. E. Duarte, J. Power Sources, 2015, 278, 119-127.

    4. [4]

      [4] V. A. Kazakov, V. N. Titova, A. A. Yavich, N. V. Petrova, M. R. Tarasevich, Russ. J. Electrochem., 2004, 40, 679-682.

    5. [5]

      [5] M. R. Tarasevich, Z. R. Karichev, V. A. Bogdanovskaya, A. V. Kapustin, E. N. Lubnin, M. A. Osina, Russ. J. Electrochem., 2005, 41, 736-745.

    6. [6]

      [6] L. M. Yang, D. F. Yan, C. B. Liu, H. J. Song, Y. H. Tang, S. L. Luo, M. J. Liu, J. Power Sources, 2015, 278, 725-732.

    7. [7]

      [7] A. Abdel Aal, H. B. Hassan, J. Alloy. Compd., 2009, 477, 652-656.

    8. [8]

      [8] N. Sattarahmady, H. Heli, F. Faramarzi, Talanta, 2010, 82, 1126-1135.

    9. [9]

      [9] L. Zhang, F. Li, Appl. Clay Sci., 2010, 50, 64-72.

    10. [10]

      [10] B. P. Lu, J. Bai, X. J. Bo, L. D. Zhu, L. P. Gu, Electrochim. Acta, 2010, 55, 8724-8730.

    11. [11]

      [11] H. B. Hassan, Z. Abdel Hamid, Int. J. Hydrogen Energy, 2011, 36, 849-856.

    12. [12]

      [12] H. B. Hassan, Z. Abdel Hamid, Surf. Interface Anal., 2013, 45, 1135- 1143.

    13. [13]

      [13] H. B. Hassan, M. A. Abdel Rahim, M. W. Khalil, R. F. Mohammed, Int. J. Electrochem. Sci., 2014, 9, 760-777.

    14. [14]

      [14] E. Antolini, E. R. Gonzalez, J. Power Sources, 2010, 195, 3431- 3450.

    15. [15]

      [15] A. J. Motheo, G. Tremiliosi-Filho, E. R. Gonzalez, K. B. Kokoh, J. M. Leger, C. Lamy, J. Appl. Electrochem., 2006, 36, 1035-1041.

    16. [16]

      [16] M. A. Abdel Rahim, R. M. Abdel Hameed, M. W. Khalil, J. Power Sources, 2004, 134, 160-169.

    17. [17]

      [17] Y. H. Qin, Y. F. Li, R. L. Lv, T. L. Wang, W. G. Wang, C. W. Wang, J. Power Sources, 2015, 278, 639-644.

    18. [18]

      [18] H. B. Hassan, Z. Abdel Hamid, M. Hassan, Surf. Interface Anal., 2014, 46, 512-520.

    19. [19]

      [19] Y. Wang, Z. Xu, Surf. Coat. Technol., 2006, 200, 3896-3902.

    20. [20]

      [20] A. Abdel Aal, K. M. Ibrahim, Z. Abdel Hamid, Wear, 2006, 260, 1070-1075.

    21. [21]

      [21] A. Abdel Aal, M. A. Barakat, R. M. Mohamed, Appl. Surf. Sci., 2008, 254, 4577-4583.

    22. [22]

      [22] A. Abdel Aal, Mater. Sci. Eng. A, 2008, 474, 181-187.

    23. [23]

      [23] H. B. Hassan, Z. Abdel Hamid, Int. J. Hydrogen Energy, 2011, 36, 5117-5127.

    24. [24]

      [24] C. W. Xu, Z. Q. Tian, P. K. Shen, S. P. Jiang, Electrochim. Acta, 2008, 53, 2610-2618.

    25. [25]

      [25] C. Kacar, B. Dalkiran, P. E. Erden, E. Kilic, Appl. Surf. Sci., 2014, 311, 139-146.

    26. [26]

      [26] R. Suresh, K. Giribabu, R. Manigandan, S. Praveen Kumar, S. Munusamy, S. Muthamizh, A. Stephen, V. Narayanan, Sens. Actuators B, 2014, 202, 440-447.

    27. [27]

      [27] H. Heli, H. Yadegari, Electrochim. Acta, 2010, 55, 2139-2148.

    28. [28]

      [28] J. P. Lei, H. Huang, X. L. Dong, L. P. Sun, B. Lu, M. K. Lei, Q. Wang, C. Dong, G. Z. Cao, Int. J. Hydrogen Energy, 2009, 34, 8127-8134.

    29. [29]

      [29] P. V. Samant, J. B. Fernandes, J. Power Sources, 1999, 79, 114-118.

    30. [30]

      [30] B. Liu, J. H. Chen, C. H. Xiao, K. Z. Cui, L. Yang, H. L. Pang, Y. F. Kuang, Energy Fuels, 2007, 21, 1365-1369.

    31. [31]

      [31] S. A. Fadl-Allah, R. M. El-Sherief, W. A. Badawy, J. Appl. Electrochem., 2008, 38, 1459-1466.

    32. [32]

      [32] H. K. Lee, H. Y. Lee, J. M. Jeon, Surf. Coat. Technol., 2007, 201, 4711-4717.

    33. [33]

      [33] M. A. M. Ibrahim, J. Appl. Electrochem., 2006, 36, 295-301.

    34. [34]

      [34] N. Guglielmi, J. Electrochem. Soc., 1972, 119, 1009-1012.

    35. [35]

      [35] S. Shawki, Z. Abdel Hamid, Anti-Corros. Method Mater., 1997, 44, 178-185.

    36. [36]

      [36] R. Q. Fratari, A. Robin, Surf. Coat. Technol., 2006, 200, 4082-4090.

    37. [37]

      [37] R. Winand, Hydrometallurgy, 1992, 29, 567-598.

    38. [38]

      [38] R. Winand, Electrochim. Acta, 1994, 39, 1091-1105.

    39. [39]

      [39] R. Winand, J. Appl. Electrochem., 1991, 21, 377-385.

    40. [40]

      [40] W. Schmickler, Interfacial Electrochemistry, Oxford University Press, Oxford, 1996.

    41. [41]

      [41] B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed., Addison Wesley Publishing, London, 1978.

    42. [42]

      [42] P. M. Robertson, J. Electroanal. Chem. Interfacial Electrochem., 1980, 111, 97-104.

    43. [43]

      [43] M. Fleischmann, K. Korinek, D. Pletcher, J. Electroanal. Chem., 1971, 31, 39-49.

    44. [44]

      [44] P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier, M. Figlarz, F. Fievet, A. de Guibert, J. Power Sources, 1982, 8, 229-255.

    45. [45]

      [45] L. Garcıa-Cruz, A. Saez, C. O. Ania, J. Solla-Gullon, T. Thiemann, J. Iniesta, V. Montiel, Carbon, 2014, 73, 291-302.

    46. [46]

      [46] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, Texas, USA, 1974.

    47. [47]

      [47] R. Barnard, C. F. Randell, F. L. Tye, J. Appl. Electrochem., 1980, 10, 109-125.

    48. [48]

      [48] R. S. Schrebler-Guzman, J. R. Vilche, A. J. Arvia, J. Appl. Electrochem., 1978, 8, 67-70.

    49. [49]

      [49] J. Wang, Analytical Electrochemistry, 3rd ed., John Wiley & Sons Inc., New Jersey, 2006.

    50. [50]

      [50] A. Döner, E. Telli, G. Kardas, J. Power Sources, 2012, 205, 71-79.

    51. [51]

      [51] A. M. Fekry, Electrochim. Acta, 2009, 54, 3480-3489.

    52. [52]

      [52] A. Maritan, F. Toigo, Electrochim. Acta, 1990, 35, 141-145.

    53. [53]

      [53] Y. C. Liu, X. P. Qiu, W. T. Zhu, G. S. Wu, J. Power Sources, 2003, 114, 10-14.

    54. [54]

      [54] J. T. Mueller, P. M. Urban, J. Power Sources, 1998, 75, 139-143.

    55. [55]

      [55] Y. Bultel, L. Genies, O. Antoine, P. Ozil, R. Durand, J. Electroanal. Chem., 2002, 527, 143-155.

    56. [56]

      [56] E. Hao Yu, K. Scott, R. W. Reeve, J. Electroanal. Chem., 2003, 547, 17-24.

    57. [57]

      [57] G. J. Brug, A. L. G. Van Den Eeden, M. Sluyters-Rehbach, J. H. Sluyters, J. Electroanal. Chem. Interfacial Electrochem., 1984, 176, 275-295.

    58. [58]

      [58] R. K. Shervedani, A. Lasia, J. Appl. Electrochem., 1999, 29, 979-986.

    59. [59]

      [59] M. Fleischmann, K. Korinek, D. Pletcher, J. Chem. Soc. Perkin Trans. 2, 1972, 1396-1403.

    60. [60]

      [60] P. M. Robertson, J. Electroanal. Chem. Interfacial Electrochem., 1980, 111, 97-104.

    61. [61]

      [61] J. Taraszewska, G. Roslonek, J. Electroanal. Chem., 1994, 364, 209-213.

    62. [62]

      [62] A. A. El-Shafei, J. Electroanal. Chem., 1999, 471, 89-95.

    63. [63]

      [63] I. Danaee, M. Jafarian, A. Mirzapoor, F. Gobal, M. G. Mahjani, Electrochim. Acta, 2010, 55, 2093-2100.

  • 加载中
    1. [1]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    2. [2]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    3. [3]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    6. [6]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    16. [16]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(1)
  • Abstract views(345)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return