Citation: Sunfeng Li, Xing Wang, Qinqin He, Qi Chen, Yanli Xu, Hanbiao Yang, Mengmeng Lü, Fengyu Wei, Xueting Liu. Synergistic effects in N-K2Ti4O9/UiO-66-NH2 composites and their photocatalysis degradation of cationic dyes[J]. Chinese Journal of Catalysis, ;2016, 37(3): 367-377. doi: 10.1016/S1872-2067(15)61033-6 shu

Synergistic effects in N-K2Ti4O9/UiO-66-NH2 composites and their photocatalysis degradation of cationic dyes

  • Corresponding author: Fengyu Wei,  Xueting Liu, 
  • Received Date: 28 October 2015
    Available Online: 12 December 2015

    Fund Project: 国家自然科学基金(51372062) (51372062)安徽省自然科学基金(1508085MB28,1308085MB21). (1508085MB28,1308085MB21)

  • N-K2Ti4O9/UiO-66-NH2 composites synthesized by a facile solvothermal method have a core-shell structure with UiO-66-NH2 forming the shell around a N-K2Ti4O9 core. Their photocatalytic activities in the degradation of dyes under visible light irradiation were investigated. The N-K2Ti4O9/UiO-66-NH2 composites exhibited higher photocatalytic activity than the pure components. This synergistic effect was due to the high adsorption capacity of UiO-66-NH2 and that the two components together induced an enhanced separation efficiency of photogenerated electron-hole pairs. The mass ratio of N-K2Ti4O9 to ZrCl4 of 3:7 in the composite exhibited the highest photocatalytic activity. Due to the electrostatic attraction between the negatively charged backbone of UiO-66-NH2 with the positively charged groups of cationic dyes, the composites were more photocatalytically active for cationic dyes than for anionic dyes.
  • 加载中
    1. [1]

      [1] A. S. Bhatt, P. L. Sakaria, M. Vasudevan, R. R. Pawar, N. Sudheesh, H. C. Bajaj, H. M. Mody, RSC Adv., 2012, 2, 8663-8671.

    2. [2]

      [2] H. Chen, J. Zhao, Adsorption, 2009, 15, 381-389.

    3. [3]

      [3] V. K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak, J. Hazard. Mater., 2011, 186, 891-901.

    4. [4]

      [4] A. Dolbecq, P. Mialane, B. Keita, L. Nadjo, J. Mater. Chem., 2012, 22, 24509-24521.

    5. [5]

      [5] A. Kubacka, M. Fernández-García, G. Colón, Chem. Rev., 2012, 112, 1555-1614.

    6. [6]

      [6] W. Q. Fan, Q. H. Zhang, Y. Wang, Phys. Chem. Chem. Phys., 2013, 15, 2632-2649.

    7. [7]

      [7] Y. Hosogi, H. Kato, A. Kudo, J. Phys. Chem. C, 2008, 112, 17678-17682.

    8. [8]

      [8] J. C. Cao, A. L. Wang, H. B. Yin, L. Q. Shen, M. Ren, S. Q. Han, Y. T. Shen, L. B. Yu, T. S. Jiang, Ind. Eng. Chem. Res., 2010, 49, 9128-9134.

    9. [9]

      [9] W. Q. Cui, S. S. Ma, L. Liu, J. S. Hu, Y. H. Liang, J. G. McEvoy, Appl. Surf. Sci., 2013, 271, 171-181.

    10. [10]

      [10] J. S. Wang, H. Li, H. Y. Li, S. Yin, T. Sato, Solid State Sci., 2009, 11, 988-993.

    11. [11]

      [11] P. Romero-Gómez, S. Hamad, J. C. González, A. Barranco, J. P. Espinós, J. Cotrino, A. R. González-Elipe, J. Phys. Chem. C, 2010, 114, 22546-22557.

    12. [12]

      [12] Y. J. Hwang, A. Boukai, P. D. Yang, Nano Lett., 2009, 9, 410-415.

    13. [13]

      [13] G. Q. Song, Z. Q. Wang, L. Wang, G. R. Li, M. J. Huang, F. X. Yin, Chin. J. Catal., 2014, 35, 185-195.

    14. [14]

      [14] G. Férey, Chem. Soc. Rev., 2008, 37, 191-214.

    15. [15]

      [15] H. L. Li, M. Eddaoudi, M. O'Keeffe, M. Yaghi, Nature, 1999, 402, 276-279.

    16. [16]

      [16] Y. S. Li, W. S. Yang, Chin. J. Catal., 2015, 36, 692-697.

    17. [17]

      [17] S. Kitagawa, R. Kitaura, S. I. Noro, Angew. Chem. Int. Ed., 2004, 43, 2334-2375.

    18. [18]

      [18] S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki, Y. Kinoshita, S. Kitagawa, J. Am. Chem. Soc., 2007, 129, 2607-2614.

    19. [19]

      [19] N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi, Science, 2003, 300, 1127-1129.

    20. [20]

      [20] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. ÕKeeffe, O. M. Yaghi, Science, 2002, 295, 469-472.

    21. [21]

      [21] M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J. H. Lee, J. S. Chang, S. H. Jhung, G. Férey, Angew. Chem. Int. Ed., 2006, 45, 8227-8231.

    22. [22]

      [22] P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. Int. Ed, 2006, 45, 5974-5978.

    23. [23]

      [23] C. G. Silva, I. Luz, F. X. Llabrés i Xamena, A. Corma, H. García, Chem.-Eur. J., 2010, 16, 11133-11138.

    24. [24]

      [24] L. J. Shen, W. M. Wu, R. W. Liang, R. Lin, L. Wu, Nanoscale, 2013, 19, 9374-9382.

    25. [25]

      [25] Q. H. Zhang, W. G. Fan, L. Gao, Appl. Catal. B, 2007, 76, 168-173.

    26. [26]

      [26] M. A. Aramendía, V. Borau, J. C. Colmenares, A. Marinas, J. M. Marinas, J. A. Navío, F. J. Urbano, Appl. Catal. B, 2008, 80, 88-97.

    27. [27]

      [27] M. H. Zhou, J. G. Yu, S. W. Liu, P. C. Zhai, L. Jiang, J. Hazard. Mater., 2008, 154, 1141-1148.

    28. [28]

      [28] M. R. Allen, A. Thibert, E. M. Sabio, N. D. Browning, D. S. Larsen, F. E. Osterloh, Chem. Mater., 2010, 22, 1220-1228.

    29. [29]

      [29] D. Mitoraj, H. Kisch, Angew. Chem. Int. Ed., 2008, 47, 9975-9978.

    30. [30]

      [30] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Hand Book of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, MN, 1979.

    31. [31]

      [31] R. L. Arechederra, K. Artyushkova, P. Atanassov, S. D. Minteer, ACS Appl. Mater. Interfaces, 2010, 2, 3295-3302.

    32. [32]

      [32] Y. Mosqueda, E. Pérez-Cappe, J. Arana, E. Longo, A. Ries, M. Cilense, P. A. P. Nascentec, P. Arandad, E. Ruiz-Hitzky, J. Solid State Chem., 2006, 179, 308-314.

    33. [33]

      [33] Q. Chen, Q. Q. He, M. M. Lv, Y. L. Xu, H. B. Yang, X. T. Liu, F. Y. Wei, Appl. Surf. Sci., 2015, 327, 77-85.

    34. [34]

      [34] V. K. Gupta, A. Mittal, L. Krishnan, V. Gajbe, Sep. Purif. Technol., 2004, 40, 87-96.

    35. [35]

      [35] X. G. Zhao, J. G. Huang, B. Wang, Q. Bi, L. L. Dong, X. J. Liu, Appl. Surf. Sci., 2014, 292, 576-582.

    36. [36]

      [36] Y. S. Ho, G. McKay, Process Biochem., 1999, 34, 451-465.

    37. [37]

      [37] D. Kavitha, C. Namasivayam, Bioresource Technol., 2007, 98, 14-21.

    38. [38]

      [38] P. Xiong, Q. Chen, M. Y. He, X. Q. Sun, X. Wang, J. Mater. Chem., 2012, 22, 17485-17493.

    39. [39]

      [39] P. Xiong, L. J. Wang, X. Q. Sun, B. H. Xu, X. Wang, Ind. Eng. Chem. Res., 2013, 52, 10105-10113.

    40. [40]

      [40] Q. Chen, Q. Q. He, M. M. Lv, X. T. Liu, J. Wang, J. P. Lv, Appl. Surf. Sci., 2014, 311, 230-238.

    41. [41]

      [41] X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science, 2011, 331, 746-750.

    42. [42]

      [42] A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, Marcel Dekker, New York, 1985.

    43. [43]

      [43] Z. G. Xiong, X. S. Zhao, J. Am. Chem. Soc., 2012, 134, 5754-5757.

    44. [44]

      [44] M. A. Butler, J. Appl. Phys., 1977, 48, 1914-1920.

    45. [45]

      [45] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, John Wiley & Sons, New York, 1980.

    46. [46]

      [46] T. X. Wu, G. M. Liu, J. C. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B, 1998, 102, 5845-5851.

    47. [47]

      [47] L. Mohapatra, K. Parida, M. Satpathy, J. Phys. Chem. C, 2012, 116, 13063-13070.

    48. [48]

      [48] B. Yuan, J. X. Wei, T. J. Hu, H. B. Yao, Z. H. Jiang, Z. W. Fang, Z. Y. Chu, Chin. J. Catal., 2015, 36, 1009-1016.

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

Metrics
  • PDF Downloads(0)
  • Abstract views(346)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return