Citation: M. Khanmohammadi, Sh. Amani, A. Bagheri Garmarudi, A. Niaei. Methanol-to-propylene process: Perspective of the most important catalysts and their behavior[J]. Chinese Journal of Catalysis, ;2016, 37(3): 325-339. doi: 10.1016/S1872-2067(15)61031-2 shu

Methanol-to-propylene process: Perspective of the most important catalysts and their behavior

  • Corresponding author: M. Khanmohammadi, 
  • Received Date: 5 October 2015
    Available Online: 16 December 2015

  • The methanol-to-propylene (MTP) process is a route of methanol conversion to hydrocarbons, which is in high demand because of limited oil resources. The present paper discusses the effect of catalyst structure on the MTP process conditions, and the role of different zeolite factors, such as acidity, crystal size, mesoporosity, and topology, on the activity and selectivity of the MTP reaction.
  • 加载中
    1. [1]

      [1] M. Firoozi, M. Baghalha, M. Asadi, Catal. Commun., 2009, 10, 1582-1585.

    2. [2]

      [2] C. S. Mei, P. Y. Wen, Z. C. Liu, H. X. Liu, Y. D. Wang, W. M. Yang, Z. K. Xie, W. M. Hua, Z. Gao, J. Catal., 2008, 258, 243-249.

    3. [3]

      [3] C. Sun, J. M. Du, J. Liu, Y. S. Yang, N. Ren, W. Shen, H. L. Xu, Y. Tang, Chem. Commun., 2010, 46, 2671-2673.

    4. [4]

      [4] G. L. Zhao, J. W. Teng, Z. K. Xie, W. Q. Jin, W. M. Yang, Q. L. Chen, Y. Tang, J. Catal., 2007, 248, 29-37.

    5. [5]

      [5] T. S. Zhao, T. Takemoto, N. Tsubaki, Catal. Commun., 2006, 7, 647-650.

    6. [6]

      [6] H. Koempel, W. Liebner, Stud. Surf. Sci. Catal., 2007, 167, 261-267.

    7. [7]

      [7] Y. J. Lee, Y. W. Kim, N. Viswanadham, K. W. Jun, J. W. Bae, Appl. Catal. A, 2010, 374, 18-25.

    8. [8]

      [8] W. Z. Wu, W. Y. Guo, W. D. Xiao, M. Luo, Chem. Eng. Sci., 2011, 66, 4722-4732.

    9. [9]

      [9] J. Liu, C. X. Zhang, Z. H. Shen, W. M. Hua, Y. Tang, W. Shen, Y. H. Yue, H. L. Xu, Catal. Commun., 2009, 10, 1506-1509.

    10. [10]

      [10] Y. S. Yang, C. Sun, J. M. Du, Y. H. Yue, W. M. Hua, C. L. Zhang, W. Shen, H. L. Xu, Catal. Commun., 2012, 24, 44-47.

    11. [11]

      [11] P. Tian, Y. X. Wei, M. Ye, Z. M. Liu, ACS Catal., 2015, 5, 1922-1938.

    12. [12]

      [12] S. Ritter, Chem. Eng. News, 2015, 93, 30-31.

    13. [13]

      [13] X. C. Wu, M. G. Abraha, R. G. Anthony, Appl. Catal. A, 2004, 260, 63-69.

    14. [14]

      [14] M. Stöcker, Microporous Mesoporous Mater., 1999, 29, 3-48.

    15. [15]

      [15] S. Hu, Y. J. Gong, Q. H. Xu, X. L. Liu, Q. Zhang, L. L. Zhang, T. Dou, Catal. Commun., 2012, 28, 95-99.

    16. [16]

      [16] S. Hu, J. Shan, Q. Zhang, Y. Wang, Y. S. Liu, Y. J. Gong, Z. J. Wu, T. Dou, Appl. Catal. A, 2012, 445-446, 215-220.

    17. [17]

      [17] A. N. Xu, H. F. Ma, H. T. Zhang, W. Y. Ying, D. Y. Fang, Polish J. Chem. Technol., 2013, 15, 95-101.

    18. [18]

      [18] F. Bleken, M. Bjørgen, L. Palumbo, S. Bordiga, S. Svelle, K. P. Lillerud, U. Olsbye, Top. Catal., 2009, 52, 218-228.

    19. [19]

      [19] H. G. Jang, H. K. Min, J. K. Lee, S. B. Hong, G. Seo, Appl. Catal. A, 2012, 437-438, 120-130.

    20. [20]

      [20] H. Schulz, Catal. Today, 2010, 154, 183-194.

    21. [21]

      [21] M. Hack, U. Koss, P. König, M. Rothaemel, H. D. Holtmann, WO Patent 0192190A1, 2001.

    22. [22]

      [22] M. Hack, U. Koss, P. König, M. Rothaemel, H. D. Holtmann, US Patent 7015369B2, 2006.

    23. [23]

      [23] R. Bauman, R. Fiato, US Patent 0174129A1, 2010.

    24. [24]

      [24] P. Su, US Patent 0303819A1, 2013.

    25. [25]

      [25] T. Setoyama, Y. Yoshikawa, K. Nakagawa, US Patent 0229482A1, 2006.

    26. [26]

      [26] T. N. Kalnes, D. H. Wei, B. K. Glover, US Patent 7663012B2, 2010.

    27. [27]

      [27] M. Rostamizadeha, A. Taeb, J. Ind. Eng. Chem., 2015, 27, 297-306.

    28. [28]

      [28] F. L. Bleken, S. Chavan, U. Olsbye, M. Boltz, F. Ocampo, B. Louis, Appl. Catal. A, 2012, 447-448, 178-185.

    29. [29]

      [29] S. Ivanova, C. Lebrun, E. Vanhaecke, C. Pham-Huu, B. Louis, J. Catal., 2009, 265, 1-7.

    30. [30]

      [30] R. C. Wei, C. Y. Li, C. H. Yang, H. H. Shan, J. Nat. Gas Chem., 2011, 20, 261-265.

    31. [31]

      [31] C. M. Wang, Y. D. Wang, Z. K. Xie, J. Catal., 2013, 301, 8-19.

    32. [32]

      [32] H. K. Min, M. B. Park, S. B. Hong, J. Catal., 2010, 271, 186-194.

    33. [33]

      [33] W. G. Song, D. M. Marcus, H. Fu, J. O. Ehresmann, J. F. Haw, J. Am. Chem. Soc., 2002, 124, 3844-3845.

    34. [34]

      [34] M. Bjørgen, F. Joensen, K. P. Lillerud, U. Olsbye, S. Svelle, Catal. Today, 2009, 142, 90-97.

    35. [35]

      [35] I. M. Dahl, S. Kolboe, Catal. Lett., 1993, 20, 329-336.

    36. [36]

      [36] I. M. Dahl, S. Kolboe, J. Catal., 1994, 149, 458-464.

    37. [37]

      [37] I. M. Dahl, S. Kolboe, J. Catal., 1996, 161, 304-309.

    38. [38]

      [38] W. Wang, A. Buchholz, M. Seiler, M. Hunger, J. Am. Chem. Soc., 2003, 125, 15260-15267.

    39. [39]

      [39] M. Bjørgen, U. Olsbye, S. Kolboe, J. Catal., 2003, 215, 30-44.

    40. [40]

      [40] M. Bjørgen, U. Olsbye, D. Petersen, S. Kolboe, J. Catal., 2004, 221, 1-10.

    41. [41]

      [41] J. W. Park, G. Seo, Appl. Catal. A, 2009, 356, 180-188.

    42. [42]

      [42] A. Sassi, M. A. Wildman, H. J. Ahn, P. Prasad, J. B. Nicholas, J. F. Haw, J. Phys. Chem. B, 2002, 106, 2294-2303.

    43. [43]

      [43] B. Arstad, S. Kolboe, J. Am. Chem. Soc., 2001, 123, 8137-8138 .

    44. [44]

      [44] C. Wang, Y. Y. Chu, A. M. Zheng, J. Xu, Q. Wang, P. Gao, G. D. Qi, Y. J. Gong, F. Deng, Chem. Eur. J., 2014, 20, 12432-12443.

    45. [45]

      [45] S. Svelle, U. Olsbye, F. Joensen, M. Bjørgen, J. Phys. Chem. C, 2007, 111, 17981-17984.

    46. [46]

      [46] S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K. P. Lillerud, S. Kolboe, M. Bjørgen, J. Am. Chem. Soc., 2006, 128, 14770-14771.

    47. [47]

      [47] M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, J. Catal., 2007, 249, 195-207.

    48. [48]

      [48] R. Khare, A. Bhan, J. Catal., 2015, 329, 218-228.

    49. [49]

      [49] S. Ilias, A. Bhan, J. Catal., 2014, 311, 6-16.

    50. [50]

      [50] J. C. Zhang, H. B. Zhang, X. Y. Yang, Z. Huang, W. L. Cao, J. Nat. Gas Chem., 2011, 20, 266-270.

    51. [51]

      [51] D. M. Bibby, R. F. Howe, G. D. Mclellan, Appl. Catal. A, 1992, 93, 1-34.

    52. [52]

      [52] M. Guisnet, P. Magnoux, Appl. Catal., 1989, 54, 1-27.

    53. [53]

      [53] D. Mores, E. Stavitski, M. H. F. Kox, J. Kornatowski, U. Olsbye, B. M. Weckhuysen, Chem. Eur. J., 2008, 14, 11320-11327.

    54. [54]

      [54] J. Li, G. Xiong, Z. Feng, Z. Liu, Q. Xin, C. Li, Microporous Mesoporous Mater., 2000, 39, 275-280.

    55. [55]

      [55] S. Müller, Y. Liu, M. Vishnuvarthan, X. Y. Sun, A. C. van Veen, G. L. Haller, M. Sanchez-Sanchez, J. A. Lercher, J. Catal., 2015, 325, 48-59.

    56. [56]

      [56] N. Y. Topsøe, K. Pedersen, E. G. Derouane, J. Catal., 1981, 70, 41-52.

    57. [57]

      [57] D. Mores, J. Kornatowski, U. Olsbye, B. M. Weckhuysen, Chem. Eur. J., 2011, 17, 2874-2884.

    58. [58]

      [58] C. D. Chang, C. T. W. Chu, R. F. Socha, J. Catal., 1984, 86, 289-296.

    59. [59]

      [59] A. G. Gayubo, P. L. Benito, A. T. Aguayo, M. Olazar, J. Bilbao, J. Chem. Technol. Biotechnol., 1996, 65, 186-192.

    60. [60]

      [60] L. H. Ong, M. Dömök, R. Olindo, A. C. van Veen, J. A. Lercher, Microporous Mesoporous Mater., 2012, 164, 9-20.

    61. [61]

      [61] W. P. Zhang, X. W. Han, X. M. Liu, X. H. Bao, J. Mol. Catal. A, 2003, 194, 107-113.

    62. [62]

      [62] V. S. Nayak, V. R. Choudhary, Appl. Catal., 1984, 10, 137-145.

    63. [63]

      [63] D. S. Mao, S. Q. Guo, T. Meng, G. Z. Lu, Acta Phys. Chim. Sin., 2010, 26, 338-344.

    64. [64]

      [64] N. Hadi, A. Niaei, S. R. Nabavi, R. Alizadeh, M. N. Shirazi, B. Izadkhah, J. Taiwan Inst. Chem. Eng., 2016, http://dx.doi.org/10.1016/j.jtice.2015.09.017.

    65. [65]

      [65] B. Valle, A. Alonso, A. Atutxa, A. G. Gayubo, J. Bilbao, Catal. Today, 2005, 106, 118-122.

    66. [66]

      [66] C. Sun, Y. S. Yang, J. M. Du, F. Qin, Z. P. Liu, W. Shen, H. L. Xu, Y. Tang, Chem. Commun., 2012, 48, 5787-5789.

    67. [67]

      [67] S. H. Zhang, B. L. Zhang, Z. X. Gao, Y. Z. Han, React. Kinet., Mechan. Catal., 2010, 99, 447-453.

    68. [68]

      [68] S. H. Zhang, B. L. Zhang, Z. X. Gao, Y. Z. Han, Ind. Eng. Chem. Res., 2010, 49, 2103-2106.

    69. [69]

      [69] J. M. Man, Q. D. Zhang, H. J. Xie, J. X. Pan, Y. S. Tan, Y. Z. Han, J. Fuel Chem. Technol., 2011, 39, 42-46.

    70. [70]

      [70] A. Mohammadrezaei, S. Papari, M. Asadi, A. Naderifar, R. Golhosseini, Frontiers Chem. Sci. Eng., 2012, 6, 253-258.

    71. [71]

      [71] S. Papari, A. Mohammadrezaei, M. Asadi, R. Golhosseini, A. Naderifar, Catal. Commun., 2011, 16, 150-154.

    72. [72]

      [72] N. Hadi, A. Niaei, S. R. Nabavi, A. Farzi, M. Navaei, Chem. Biochem. Eng. Q., 2014, 28, 53-63.

    73. [73]

      [73] N. Hadi, A. Niaei, S. R. Nabavi, M. Navaei Shirazi, R. Alizadeh, J. Ind. Eng. Chem., 2015, 29, 52-62.

    74. [74]

      [74] P. Ciambelli, G. Bagnasco, P. Corbo, Stud. Surf. Sci. Catal., 1989, 44, 239-246.

    75. [75]

      [75] A. M. Al-Jarallah, U. A. El-Nafaty, M. M. Abdillahi, Appl. Catal. A, 1997, 154, 117-127.

    76. [76]

      [76] E. Beerdsen, D. Dubbeldam, B. Smit, T. J. H. Vlugt, S. Calero, J. Phys. Chem. B, 2003, 107, 12088-12096.

    77. [77]

      [77] G. Ciobanu, D. Ignat, G. Carja, S. Ratoi, C. Luca, Chem. Bull. "POLITEHNICA" Univ. (Timisoara), 2008, 53, 200-203.

    78. [78]

      [78] W. Q. Wu, E. Weitz, Appl. Surf. Sci., 2014, 316, 405-415.

    79. [79]

      [79] N. Kumar, L. E. Lindfors, Catal. Lett., 1996, 38, 239-244.

    80. [80]

      [80] F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, Microporous Mesoporous Mater., 2015, 203, 41-53.

    81. [81]

      [81] D. V. Vu, Y. Hirota, N. Nishiyama, Y. Egashira, K. Ueyama, J. Jpn. Petrol. Inst., 2010, 53, 232-238

    82. [82]

      [82] Z. da Silva Barros, F. M. Z. Zotin, C. A. Henriques, Stud. Surf. Sci. Catal., 2007, 167, 255-260.

    83. [83]

      [83] P. Li, W. P. Zhang, X. W. Han, X. H. Bao, Catal. Lett., 2010, 134, 124-130.

    84. [84]

      [84] T. W. Beutel, S. J. Mccarthy, B. Waldrup, M. Daage, K. J. Hickey, WO Patent 059162A1, 2013.

    85. [85]

      [85] M. Kaarsholm, F. Joensen, J. Nerlov, R. Cenni, J. Chaouki, G. S. Patience, Chem. Eng. Sci., 2007, 62, 5527-5532.

    86. [86]

      [86] D. S. Mao, Q. S. Guo, G. Z. Lu, Acta Petrol. Sin. (Petrol. Processing Sect.), 2009, 25, 503-508.

    87. [87]

      [87] W. W. Kaeding, S. A. Butter, J. Catal., 1980, 61, 155-164.

    88. [88]

      [88] J. C. Vedrine, A. Auroux, P. Dejaifve, V. Ducarme, H. Hoser, S. B. Zhou, J. Catal., 1982, 73, 147-160.

    89. [89]

      [89] J. A. Lercher, G. Rumplmayr, Appl. Catal., 1986, 25, 215-222.

    90. [90]

      [90] T. Blasco, A. Corma, J. Martínez-Triguero, J. Catal., 2006, 237, 267-277.

    91. [91]

      [91] N. H. Xue, X. K. Chen, L. Nie, X. F. Guo, W. P. Ding, Y. Chen, M. Gu, Z. K. Xie, J. Catal., 2007, 248, 20-28.

    92. [92]

      [92] G. W. Wang, M. L. Ying, X. C. Wang, G. Q. Chen, US Patent 5367100A, 1994.

    93. [93]

      [93] H. Ito, K. Ooyama, S. Yamada, M. Kume, N. Chikamatsu, US Patent 0032379A1, 2007.

    94. [94]

      [94] S. Hu, Q. Zhang, Z. Xia, Y. J. Gong, J. Xu, F. Deng, T. Dou, Acta Phys. Chim. Sin., 2012, 28, 2705-2712.

    95. [95]

      [95] S. Han, D. S. Shihabi, C. D. Chang, J. Catal., 2000, 196, 375-378.

    96. [96]

      [96] F. Kollmer, H. Hausmann, W. F. Hoelderich, J. Catal., 2004, 227, 408-418.

    97. [97]

      [97] Z. X. Qin, J. P. Gilson, V. Valtchev, Curr. Opin. Chem. Eng., 2015, 8, 1-6.

    98. [98]

      [98] Y. G. He, C. Y. Li, E. Z. Min, Stud. Surf. Sci. Catal., 1989, 49, 189-197.

    99. [99]

      [99] L. R. Aramburo, L. C. Karwacki, P. Cubillas, S. Asahina, D. A. M. de Winter, M. R. Drury, I. L. C. Buurmans, E. Stavitski, D. Mores, M. Daturi, P. Bazin, P. Dumas, F. Thibault-Starzyk, J. A. Post, M. W. Anderson, O. Terasaki, B. M. Weckhuysen, Chem. Eur. J., 2011, 17, 13773-13781.

    100. [100]

      [100] J. L. Wan, Y. X. Wei, Z. M. Liu, B. Li, Y. Qi, M. Z. Li, P. Xie, S. H. Meng, Y. L. He, F. X. Chang, Catal. Lett., 2008, 124, 150-156.

    101. [101]

      [101] S. L. Zhang, Y. J. Gong, L. L. Zhang, Y. S. Liu, T. Dou, J. Xu, F. Deng, Fuel Processing Technol., 2015, 129, 130-138.

    102. [102]

      [102] C. S. Triantafillidis, A. G. Vlessidis, L. Nalbandian, N. P. Evmiridis, Microporous Mesoporous Mater., 2001, 47, 369-388.

    103. [103]

      [103] S. M. T. Almutairi, B. Mezari, E. A. Pidko, P. C. M. M. Magusin, E. J. M. Hensen, J. Catal., 2013, 307, 194-203.

    104. [104]

      [104] H. K. Beyer, Mol. Sieves, 2002, 3, 203-255.

    105. [105]

      [105] R. M. Barrer, M. B. Makki, Can. J. Chem., 1964, 42, 1481-1487.

    106. [106]

      [106] Z. Qin, L. Lakiss, J. P. Gilson, K. Thomas, J. M. Goupil, C. Fernandez, V. Valtchev, Chem. Mater., 2013, 25, 2759-2766.

    107. [107]

      [107] Y. Oumi, S. Nemoto, S. Nawata, T. Fukushima, T. Teranishi, T. Sano, Mater. Chem. Phys., 2002, 78, 551-557.

    108. [108]

      [108] Y. Fan, X. J. Bao, X. Y. Lin, G. Shi, H. Y. Liu, J. Phys. Chem. B, 2006, 110, 15411-15416

    109. [109]

      [109] S. M. Campbell, D. M. Bibby, J. M. Coddington, R. F. Howe, J. Catal., 1996, 161, 350-358.

    110. [110]

      [110] A. de Lucas, P. Canizares, A. Durhn, A. Carrero, Appl. Catal. A, 1997, 154, 221-240.

    111. [111]

      [111] M. D. Gonzalez, Y. Cesteros, P. Salagre, Microporous Mesoporous Mater., 2011, 144, 162-170.

    112. [112]

      [112] R. R. Xu, W. Q. Pang, J. H. Yu, Q. S. Huo, J. S. Chen, Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure, John Wiley & Sons (Asia) Pte Ltd, Singapore, 2007.

    113. [113]

      [113] R. M. Lago, W. O. Haag, R. J. Mikovsky, D. H. Olson, S. D. Hellring, K. D. Schmitt, G. T. Kerr, Stud. Surf. Sci. Catal., 1986, 28, 677-684.

    114. [114]

      [114] Y. W. Zhang, Y. M. Zhou, K. Z. Yang, Y. Li, Y. Wang, Y. Xu, P. C. Wu, Microporous Mesoporous Mater., 2006, 96, 245-254.

    115. [115]

      [115] P. Praserthdam, N. Mongkolsiri, P. Kanchanawanichkun, Catal. Commun., 2002, 3, 191-197.

    116. [116]

      [116] P. A. Jacobs, H. K. Beyer, J. Phys. Chem., 1979, 83, 1174-1177.

    117. [117]

      [117] L. Y. Fang, Y. C. Cheng, Ind. Catal., 2012, 20(9), 40-46.

    118. [118]

      [118] T. Tago, T. Masuda, in: Y. Masuma ed., Nanocrystals, InTech Open Access Publisher, 2010, 191-206.

    119. [119]

      [119] F. Wang, Q. Zhang, S. Hu, Y. J. Gong, T. Dou, Ind. Catal., 2012, 20(7), 17-21.

    120. [120]

      [120] M. Yao, S. Hu, J. Wang, T. Dou, Y. P. Wu, Acta Phys. Chim. Sin., 2012, 28, 2122-2128.

    121. [121]

      [121] T. Armaroli, L. J. Simon, M. Digne, T. Montanari, M. Bevilacqua, V. Valtchev, J. Patarin, G. Busca, Appl. Catal. A, 2006, 306, 78-84.

    122. [122]

      [122] Y. L. Jiao, C. H. Jiang, Z. M. Yang, J. S. Zhang, Microporous Mesoporous Mater., 2012, 162, 152-158.

    123. [123]

      [123] S. Ivanova, B. Louis, B. Madani, J. P. Tessonnier, M. J. Ledoux, C. Pham-Huu, J. Phys. Chem. C, 2007, 111, 4368-4374.

    124. [124]

      [124] S. Ivanova, E. Vanhaecke, L. Dreibine, B. Louis, C. Pham, C. Pham-Huu, Appl. Catal. A, 2009, 359, 151-157.

    125. [125]

      [125] M. Wen, X. Y. Wang, L. P. Han, J. Ding, Y. Sun, Y. Liu, Y. Lu, Microporous Mesoporous Mater., 2015, 206, 8-16.

    126. [126]

      [126] K. Egeblad, C. H. Christensen, M. Kustova, C. H. Christensen, Chem. Mater., 2008, 20, 946-960.

    127. [127]

      [127] A. A. Rownaghi, F. Rezaei, J. Hedlund, Catal. Commun., 2011, 14, 37-41.

    128. [128]

      [128] D. Prinz, L. Riekert, Appl. Catal., 1988, 37, 139-154.

    129. [129]

      [129] M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature, 2009, 461, 246-249.

    130. [130]

      [130] D. Chen, K. Moljord, T. Fuglerud, A. Holmen, Microporous Mesoporous Mater., 1999, 29, 191-203.

    131. [131]

      [131] W. P. Zhang, X. H. Bao, X. W. Guo, X. S. Wang, Catal. Lett., 1999, 60, 89-94.

    132. [132]

      [132] W. Park, D. Yu, K. Na, K. E. Jelfs, B. Slater, Y. Sakamoto, R. Ryoo, Chem. Mater., 2011, 23, 5131-5137.

    133. [133]

      [133] R. Khare, D. Millar, A. Bhan, J. Catal., 2015, 321, 23-31.

    134. [134]

      [134] S. van Donk, A. H. Janssen, J. H. Bitter, K. P. de Jong, Catal. Rev.-Sci. Eng., 2003, 45, 297-319.

    135. [135]

      [135] X. Y. Li, M. H. Sun, J. C. Rooke, L. H. Chen, B. L. Su, Chin. J. Catal., 2013, 34, 22-47.

    136. [136]

      [136] J. Zhu, X. J. Meng, F. S. Xiao, Frontiers Chem. Sci. Eng., 2013, 7, 233-248.

    137. [137]

      [137] Y. S. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev., 2006, 106, 896-910.

    138. [138]

      [138] K. Na, M. Choi, R. Ryoo, Microporous Mesoporous Mater., 2013, 166, 3-19.

    139. [139]

      [139] J. C. Groen, J. C. Jansen, J. A. Moulijn, J. Perez-Ramirez, J. Phys. Chem. B, 2004, 108, 13062-13065.

    140. [140]

      [140] L. L. Su, L. Liu, J. Q. Zhuang, H. X. Wang, Y. G. Li, W. J. Shen, Y. D. Xu, Catal. Lett., 2003, 91, 155-167.

    141. [141]

      [141] Y. Wang, S. Wang, Open J. Adv. Mater. Res., 2013, 1(2), 13-23.

    142. [142]

      [142] P. J. Kooyman, P. van der Waal, H. van Bekkum, Zeolites, 1997, 18, 50-53.

    143. [143]

      [143] C. S. Triantafillidis, A. G. Vlessidis, N. P. Evmiridis, Ind. Eng. Chem. Res., 2000, 39, 307-319.

    144. [144]

      [144] N. S. Nesterenko, F. Thibault-Starzyk, V. Montouillout, V. V. Yuschenko, C. Fernandez, J. P. Gilson, F. Fajula, I. I. Ivanova, Microporous Mesoporous Mater., 2004, 71, 157-166.

    145. [145]

      [145] K. Moller, T. Bein, Chem. Soc. Rev., 2013, 42, 3689-3707.

    146. [146]

      [146] S. Lopez-Orozco, A. Inayat, A. Schwab, T. Selvam, W. Schwieger, Adv. Mater., 2011, 23, 2602-2615.

    147. [147]

      [147] A. Taguchi, F. Schüth, Microporous Mesoporous Mater., 2005, 77, 1-45.

    148. [148]

      [148] X. J. Meng, F. Nawaz, F. S. Xiao, Nano Today, 2009, 4, 292-301.

    149. [149]

      [149] C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, J. Am. Chem. Soc., 2000, 122, 7116-7117.

    150. [150]

      [150] J. Kim, M. Choi, R. Ryoo, J. Catal., 2010, 269, 219-228.

    151. [151]

      [151] I. Schmidt, A. Boisen, E. Gustavsson, K. Stahl, S. Pehrson, S. Dahl, A. Carlsson, C. J. H. Jacobsen, Chem. Mater., 2001, 13, 4416-4418.

    152. [152]

      [152] A. Boisen, I. Schmidt, A. Carlsson, S. Dahl, M. Brorson, C. J. H. Jacobsen, Chem. Commun., 2003, 958-959.

    153. [153]

      [153] A. H. Janssen, I. Schmidt, C. J. H. Jacobsen, A. J. Koster, K. P. de Jong, Microporous Mesoporous Mater., 2003, 65, 59-75.

    154. [154]

      [154] Y. S. Tao, H. Kanoh, K. Kaneko, J. Am. Chem. Soc., 2003, 125, 6044-6045.

    155. [155]

      [155] Z. X. Yang, Y. D. Xia, R. Mokaya, Adv. Mater., 2004, 16, 727-732.

    156. [156]

      [156] L. F. Wang, Z. Zhang, C. Y. Yin, Z. C. Shan, F. S. Xiao, Microporous Mesoporous Mater., 2010, 131, 58-67.

    157. [157]

      [157] H. X. Tao, H. Yang, X. H. Liu, J. W. Ren, Y. Q. Wang, G. Z. Lu, Chem. Eng. J., 2013, 225, 686-694.

    158. [158]

      [158] R. W. Wang, W. T. Liu, S. Ding, Z. T. Zhang, J. X. Li, S. L. Qiu, Chem. Commun., 2010, 46, 7418-7420.

    159. [159]

      [159] J. Perez-Ramírez, S. Abello, A. Bonia, G. C. Groen, Adv. Funct. Mater., 2009, 19, 164-172.

    160. [160]

      [160] X. Li, B. S. Li, J. Q. Xu, Colloids Surf. A, 2013, 434, 287-295.

    161. [161]

      [161] J. Ahmadpour, M. Taghizadeh, J. Nat. Gas Sci. Eng., 2015, 23, 184-194.

    162. [162]

      [162] J. C. Moreno-Pirajan, V. S. Garcia-Cuello, L. Giraldo, J. Thermodyn. Catal., 2010, 1, 101-108.

    163. [163]

      [163] J. S. J. Hargreaves, A. L. Munnoch, Catal. Sci. Technol., 2013, 3, 1165-1171.

    164. [164]

      [164] G. Burgfels, K. Kochloefl, J. Ladebeck, M. Schneider, F. Schmidt, H. J. Wernicke, J. Schonlinner, US Patent 0138053A1, 2004.

    165. [165]

      [165] J. Freiding, F. C. Patcas, B. Kraushaar-Czarnetzki, Appl. Catal. A, 2007, 328, 210-218.

    166. [166]

      [166] K. Y. Lee, H. K. Lee, S. K. Ihm, Top. Catal., 2010, 53, 247-253.

    167. [167]

      [167] X. Wu, A. Alkhawaldeh, R. G. Anthony, Stud. Surf. Sci. Catal., 2000, 143, 217-225.

    168. [168]

      [168] S. D. Kim, S. C. Baek, Y. J. Lee, K. W. Jun, M. J. Kim, I. S. Yoo, Appl. Catal. A, 2006, 309, 139-143.

    169. [169]

      [169] S. Hajimirzaee, M. Ainte, B. Soltani, R. M. Behbahani, G. A. Leeke, J. Wood, Chem. Eng. Res. Des., 2015, 93, 541-553.

    170. [170]

      [170] A. K. Ghosh, C. Mihut, M. Simmons, US Patent 2014080696A1, 2014.

    171. [171]

      [171] R. V. Jasra, B. Tyagi, Y. M. Badheka, V. N. Choudary, T. S. G. Bhat, Ind. Eng. Chem. Res., 2003, 42, 3263-3272.

    172. [172]

      [172] P. Sanchez, F. Dorado, A. Funez, V. Jimenez, M. J. Ramos, J. L. Valverde, J. Mol. Catal. A, 2007, 273, 109-113.

    173. [173]

      [173] A. de Lucas, J. L. Valverde, P. Sánchez, F. Dorado, M. J. Ramos, Ind. Eng. Chem. Res, 2004, 43, 8217-8225.

    174. [174]

      [174] J. Freiding, B. Kraushaar-Czarnetzki, Appl. Catal. A, 2011, 391, 254-260.

    175. [175]

      [175] L. R. M. Martens, D. M. Marcus, T. Xu, US Patent 0099913A1, 2015.

    176. [176]

      [176] S. Teketela, U. Olsbyea, K. P. Lilleruda, P. Beatob, S. Svellea, Appl. Catal. A, 2015, 494, 68-76.

    177. [177]

      [177] L. L. Wu, V. Degirmenci, P. C. M. M. Magusin , N. J. H. G. M. Lousberg , E. J. M. Hensen, J. Catal., 2013, 298, 27-40.

    178. [178]

      [178] X. J. Meng, Q. J. Yu, Y. A. Gao, Q. Zhang, C. Y. Li, Q. K. Cui, Catal. Commun., 2015, 61, 67-71.

    179. [179]

      [179] Q. J. Zhu, J. N. Kondo, T. Tatsumi, S. Inagaki, R. Ohnuma, Y. Kubota, Y. Shimodaira, H. Kobayashi, K. Domen, J. Phys. Chem. C, 2007, 111, 5409-5415.

    180. [180]

      [180] S. Hu, Y. J. Gong, Q. Zhang, J. L. Zhang, Y. F. Zhang, F. Y. Yang, T. Dou, CIESC J., 2012, 63, 3889-3896.

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    8. [8]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    9. [9]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    17. [17]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    18. [18]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    19. [19]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    20. [20]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(1)
  • Abstract views(409)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return