Citation: Lingling Fu, Yijuan Lu, Zhigang Liu, Runliang Zhu. Influence of the metal sites of M-N-C (M = Co, Fe, Mn) catalysts derived from metalloporphyrins in ethylbenzene oxidation[J]. Chinese Journal of Catalysis, ;2016, 37(3): 398-404. doi: 10.1016/S1872-2067(15)61029-4 shu

Influence of the metal sites of M-N-C (M = Co, Fe, Mn) catalysts derived from metalloporphyrins in ethylbenzene oxidation

  • Corresponding author: Zhigang Liu, 
  • Received Date: 15 October 2015
    Available Online: 24 November 2015

    Fund Project: 国家自然科学基金(21103045,1210040,1103312) (21103045,1210040,1103312)中国石油大学重质油国家重点实验室(SKCHOP201504) (SKCHOP201504)中国科学院广州地球与化学研究所中国科学院矿物学与成矿学重点实验室(KLMM20150103). (KLMM20150103)

  • Transition metal catalysts M-N-C (M = Co, Fe, Mn) were synthesized by a template-free method by heating meso-tetraphenyl porphyrins (i.e. CoTPP, FeTPPCl, MnTPPCl) precursors. The catalysts were characterized by N2 adsorption-desorption, thermogravimetry, high-resolution transmission electron microscopy, and Raman and X-ray photoelectron spectroscopy. The selective oxidation of ethylbenzene with molecular oxygen under a solvent-free condition was carried out to explore the catalytic performance of the M-N-Cs, which exhibited different catalytic performance. That was ascribed to the difference in M (Co, Fe, Mn) and different graphitization degree forming during the heating process, in which M (Co, Fe, Mn) might have different catalytic activity on the formation of the M-N-C catalyst. All the M-N-C composites had remarkable recyclability in the selective oxidation of ethylbenzene.
  • 加载中
    1. [1]

      [1] K. A. Kuttiyiel, Y. M. Choi, S. M. Hwang, G. G. Park, T. H. Yang, D. Su, K. Sasaki, P. Liu, R. R. Adzic, Nano Energy, 2015, 13, 442-449.

    2. [2]

      [2] X. C. Wang, X. R. Liu, Y. Xu, G. M. Peng, Q. Cao, X. D. Mu, Chin. J. Catal., 2015, 36, 1614-1622.

    3. [3]

      [3] J. C. Zhang, J. X. Guo, W. Liu, S. P. Wang, A. R. Xie, X. F. Liu, J. Wang, Y. Z. Yang, Eur. J. Inorg. Chem., 2015, 2015, 969-976.

    4. [4]

      [4] C. Domínguez, F. J. Pérez-Alonso, M. Abdel Salam, J. L. G. de la Fuente, S. A. Al-Thabaiti, S. N. Basahel, M. A. Peña, J. L. G. Fierro, S. Rojas, Int. J. Hydrogen Energy, 2014, 39, 5309-5318.

    5. [5]

      [5] H. Y. Jin, J. Wang, D. F. Su, Z. F. Wei, Z. F. Pang, Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.

    6. [6]

      [6] R. V. Jagadeesh, H. Junge, M. M. Pohl, J. Radnik, A. Brückner, M. Beller, J. Am. Chem. Soc., 2013, 135, 10776-10782.

    7. [7]

      [7] I. Matanovic, S. Babanova, A. Perry III, A. Serov, K. Artyushkovaa, P. Atanassov, Phys. Chem. Chem. Phys., 2015, 17, 13235-13244.

    8. [8]

      [8] J. Masa, W. Xia, I. Sinev, A. Q. Zhao, Z. Y. Sun, S. Grutzke, P. Weide, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed., 2014, 53, 8508-8512.

    9. [9]

      [9] R. Othman, A. L. Dicks, Z. H. Zhu, Int. J. Hydrogen Energy, 2012, 37, 357-372.

    10. [10]

      [10] D. F. Su, J. Wang, H. Y. Jin, Y. T. Gong, M. M. Li, Z. F. Pang, Y. Wang, J. Mater. Chem. A, 2015, 3, 11756-11761.

    11. [11]

      [11] I. Herrmann, U. I. Kramm, S. Fiechter, P. Bogdanoff, Electrochim. Acta, 2009, 54, 4275-4287.

    12. [12]

      [12] S. L. Gojkovic, S. Gupta, R. F. Savinell, Electrochim. Acta, 1999, 45, 889-897.

    13. [13]

      [13] Z. G. Liu, L. T. Ji, X. L. Dong, Z. Li, L. L. Fu, Q. A. Wang, RSC Adv., 2015, 5, 6259-6264.

    14. [14]

      [14] Z. G. Liu, L. T. Ji, J. Liu, L. L. Fu, S. F. Zhao, J. Mol. Catal. A, 2014, 395, 315-321.

    15. [15]

      [15] D. H. Shen, L. T. Ji, Z. G. Liu, W. B. Sheng, C. C. Guo, J. Mol. Catal. A, 2013, 379, 15-20.

    16. [16]

      [16] H. Jin, H. M. Zhang, H. X. Zhong, J. L. Zhang, Energy Environ. Sci., 2011, 4, 3389-3394.

    17. [17]

      [17] L. L. Fu, Y. Chen, Z. G. Liu, J. Mol. Catal. A, 2015, 408, 91-97.

    18. [18]

      [18] A. A. Costa, G. F. Ghesti, J. L. de Macedo, V. S. Braga, M. M. Santos, J. A. Dias, S. C. L. Dias, J. Mol. Catal. A, 2008, 282, 149-157.

    19. [19]

      [19] F. Yang, S. Y. Gao, C. R. Xiong, H. Q. Wang, J. Chen, Y. Kong, Chin. J. Catal., 2015, 36, 1035-1041.

    20. [20]

      [20] Y. J. Gao, G. Hu, J. Zhong, Z. J. Shi, Y. S. Zhu, D. S. Su, J. G. Wang, X. H. Bao, D. Ma, Angew. Chem. Int. Ed., 2013, 52, 2109-2113.

    21. [21]

      [21] Y. L. Li, J. J. Wang, X. F. Li, J. Liu, D. S. Geng, J. L. Yang, Electrochem. Commun., 2011, 13, 668-672.

    22. [22]

      [22] Y. H. Su, Y. H. Zhu, H. L. Jiang, J. H. Shen, X. L. Yang, W. J. Zou, J. D. Chen, C. Z. Li, Nanoscale, 2014, 6, 15080-15089.

    23. [23]

      [23] J. Wang, G. X. Wang, S. Miao, X. L. Jiang, J. Y. Li, X. H. Bao, Carbon, 2014, 75, 381-389.

    24. [24]

      [24] H. S. Oh, H. Kim, J. Power Sources, 2012, 212, 220-225.

    25. [25]

      [25] C. V. Schenck, J. G. Dillard, J. W. Murray, J. Colloid Interface Sci., 1983, 95, 398-409.

    26. [26]

      [26] E. Puello-Polo, J. L. Brito, J. Mol. Catal. A, 2008, 281, 85-92.

    27. [27]

      [27] Y. Chen, S. F. Zhao, Z. G. Liu, Phys. Chem. Chem. Phys., 2015, 17, 14012-14020.

    28. [28]

      [28] Y. Yao, B. Q. Zhang, J. Y. Shi, Q. H. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 7413-7420.

    29. [29]

      [29] L. L. Geng, M. Zhang, W. X. Zhang, M. J. Jia, W. Yan, G. Liu, Catal. Sci. Technol., 2015, 5, 3097-3102.

    30. [30]

      [30] L. L. Geng, X. Y. Zhang, W. X. Zhang, M. J. Jia, G. Liu, Chem. Commun., 2014, 50, 2965-2967.

    31. [31]

      [31] S. Pylypenko, S. Mukherjee, T. S. Olson, P. Atanassov, Electrochim. Acta, 2008, 53, 7875-7883.

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    8. [8]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    9. [9]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    18. [18]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(0)
  • Abstract views(533)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return