Citation:
Qikun Zhang, Junqing Kang, Bing Yang, Leizhen Zhao, Zhaosheng Hou, Bo Tang. Immobilized cellulase on Fe3O4 nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob[J]. Chinese Journal of Catalysis,
;2016, 37(3): 389-397.
doi:
10.1016/S1872-2067(15)61028-2
-
A magnetically recoverable biocatalyst was successfully prepared through the immobilization of cellulase onto Fe3O4 nanoparticles. The magnetic nanoparticles were synthesized by a hydrothermal method in an aqueous system. The support (Fe3O4 nanoparticles) was modified with (3-aminopropyl)triethoxysilane, and glutaraldehyde was used as the cross-linker to immobilize the cellulose onto the modified support. Different factors that influence the activity of the immobilized enzyme were investigated. The experimental results indicated that the suitable immobilization temperature and pH are 40 ℃ and 6.0, respectively. The optimal glutaraldehyde concentration is ~2.0 wt%, and the appropriate immobilization time is 4 h. Under these optimal conditions, the activity of the immobilized enzyme could be maintained at 99.1% of that of the free enzyme. Moreover, after 15 cyclic runs, the activity of the immobilized enzyme was maintained at ~91.1%. The prepared biocatalyst was used to decompose corncobs, and the maximum decomposition rate achieved was 61.94%.
-
Keywords:
- Magnetic nanoparticle,
- Cellulase,
- Enzyme immobilization,
- Corncob,
- Glutaraldehyde
-
-
-
[1]
[1] W. L. Xie, N. Ma, Energy Fuels, 2009, 23, 1347-1353.
-
[2]
[2] W. J. Goh, V. S. Makam, J. Hu, L. F. Kang, M. R. Zheng, S. L. Yoong, C. N. B. Udalagama, G. Pastorin, Langmuir, 2012, 28, 16864-16873.
-
[3]
[3] L. Wang, X. G. Fan, P. Tang, Q. P. Yuan, J. Chem. Technol. Biotechnol., 2013, 88, 2067-2074.
-
[4]
[4] S. J. Bao, X. G. Zhang, X. M. Liu, L. Y. Xin, J. P. Qu, Chin. J. Catal., 2003, 24, 909-913.
-
[5]
[5] W. S. Lim, J. W. Lee, Bioresour. Technol., 2013, 130, 97-101.
-
[6]
[6] A. Karlsson, A. Aspegren, J. Chromatogr. A, 2000, 866, 15-23.
-
[7]
[7] E. Cherian, M. Dharmendirakumar, G. Baska, Chin. J. Catal., 2015, 36, 1223-1229.
-
[8]
[8] L. Wang, H. Z. Chen. Process Biochem., 2011, 46, 604-607.
-
[9]
[9] N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, M. Ladisch, Bioresour. Technol., 2005, 96, 673-686.
-
[10]
[10] Y. Ping, H. Z. Ling, G. Song, J. P. Ge, Biochem. Eng. J., 2013, 75, 86-91.
-
[11]
[11] L. L. Ding, B. Zou, H. Q. Liu, Y. N. Li, Z. C. Wang, Y. Su, Y. P. Guo, X. F. Wang, Chem. Eng. J., 2013, 225, 300-305.
-
[12]
[12] P. Obama, G. Ricochon, L. Muniglia, N. Brosse, Bioresour. Technol., 2012, 112, 156-163.
-
[13]
[13] Q. K. Zhang, X. T. Han, B. Tang, RSC Adv., 2013, 3, 9924-9931.
-
[14]
[14] J. S. Lupoi, E. A. Smith, Biotechnol. Bioeng., 2011, 108, 2835-2843.
-
[15]
[15] J. L. Rahikainen, J. D. Evans, S. Mikander, A. Kalliola, T. Puranen, T. Tamminen, K. Marjamaa, K. Kruus, Enzyme Microb. Technol., 2013, 53, 315-321.
-
[16]
[16] N. K. Pazarlioǧlu, M. Sariişik, A. Telefoncu, Process Biochem., 2005, 40, 767-771.
-
[17]
[17] T. C. Hung, C. C. Fu, C. H. Su, J. Y. Chen, W. T. Wu, Y. S. Lin, Enzyme Microb. Technol., 2011, 49, 30-37.
-
[18]
[18] Y. Y. Yu, J. G. Yuan, Q. Wang, X. R. Fan, X. Y. Ni, P. Wang, L. Cui, Carbohyd. Polym., 2013, 95, 675-680.
-
[19]
[19] A. A. Gokhale, J. Lu, I. Lee, J. Mol. Catal. B, 2013, 90, 76-86.
-
[20]
[20] L. Y. Wang, H. X. Wang, A. J. Wang, M. Liu, Chin. J. Catal., 2009, 30, 939-944.
-
[21]
[21] F. Liguori, C. Moreno-Marrodan, P. Barbaro, Chin. J. Catal., 2015, 36, 1157-1169.
-
[22]
[22] S. H. Huang, M. H. Liao, D. H. Chen, Biotechnol. Prog., 2003, 19, 1095-1100.
-
[23]
[23] G. Zheng, S. Yan. Biotechnol. Prog., 2004, 20, 500-506.
-
[24]
[24] F. Lopez-Gallego, L. Betancor, C. Mateo, A. Hidalgo, N. Alonso-Morales, G. Dellamora-Ortiz, J. M. Gaisan, R. Fernandez-Lafuente, J. Biotechnol., 2005, 119, 70-75.
-
[25]
[25] O. Barbosa, R. Torres, C. Ortiz, R. Fernandez-Lafuente, Process Biochem., 2012, 47, 1220-1227.
-
[26]
[26] Y. H. Dong, Y. Cai, Z. K. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang, D. Y. Zhao, J. Am. Chem. Soc., 2010, 132, 8466-8473.
-
[27]
[27] S. Laurent, D. Forge, M. Port, A. Roch, C. Robio, L. V. Elst, R. N. Muller, Chem. Rev., 2008, 108, 2064-2110.
-
[28]
[28] G. H. Zhao, J. Z. Wang, Y. F. Li, X. Chen, Y. P. Liu, J. Phys. Chem. C, 2011, 115, 6350-6359.
-
[29]
[29] R. G. Chaudhuri, S. Paria, Chem. Rev., 2012, 112, 2373-2433.
-
[30]
[30] M. Dashtban, M. Maki, K. T. Leung, C. Q. Mao, W. S. Qin, Crit. Rev. Biotechnol., 2010, 30, 302-309.
-
[31]
[31] M. Chen, L. M. Xia, P. J. Xue, Int. Biodeter. Biodegr., 2007, 59, 85-89.
-
[32]
[32] E. Viola, F. Zimbardi, V. Valerio, F. Nanna, A. Battafarano, Appl. Energy, 2013, 102, 198-203.
-
[33]
[33] E. Bahcegul, E. Tatli, N. I. Haykir, S. Apaydin, U. Bakir, Bioresour. Technol., 2011, 102, 9646-9652.
-
[1]
-
-
-
[1]
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
-
[2]
Yueyue WEI , Xuehua SUN , Hongmei CHAI , Wanqiao BAI , Yixia REN , Loujun GAO , Gangqiang ZHANG , Jun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193
-
[3]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[4]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[5]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[6]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[7]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[8]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[9]
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
-
[10]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[11]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[12]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[13]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[14]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[15]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[16]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[17]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[18]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[19]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[20]
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(623)
- HTML views(127)