Citation: Qikun Zhang, Junqing Kang, Bing Yang, Leizhen Zhao, Zhaosheng Hou, Bo Tang. Immobilized cellulase on Fe3O4 nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob[J]. Chinese Journal of Catalysis, ;2016, 37(3): 389-397. doi: 10.1016/S1872-2067(15)61028-2 shu

Immobilized cellulase on Fe3O4 nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob

  • Corresponding author: Qikun Zhang, 
  • Received Date: 2 December 2015
    Available Online: 8 December 2015

    Fund Project: 国家重点基础研究发展计划(973计划,2013CB933800) (973计划,2013CB933800)山东省自然科学基金(ZR2013EMM004) (ZR2013EMM004)济南市高校自主创新计划(201401245) (201401245)国家级大学生创新训练项目(201410445074). (201410445074)

  • A magnetically recoverable biocatalyst was successfully prepared through the immobilization of cellulase onto Fe3O4 nanoparticles. The magnetic nanoparticles were synthesized by a hydrothermal method in an aqueous system. The support (Fe3O4 nanoparticles) was modified with (3-aminopropyl)triethoxysilane, and glutaraldehyde was used as the cross-linker to immobilize the cellulose onto the modified support. Different factors that influence the activity of the immobilized enzyme were investigated. The experimental results indicated that the suitable immobilization temperature and pH are 40 ℃ and 6.0, respectively. The optimal glutaraldehyde concentration is ~2.0 wt%, and the appropriate immobilization time is 4 h. Under these optimal conditions, the activity of the immobilized enzyme could be maintained at 99.1% of that of the free enzyme. Moreover, after 15 cyclic runs, the activity of the immobilized enzyme was maintained at ~91.1%. The prepared biocatalyst was used to decompose corncobs, and the maximum decomposition rate achieved was 61.94%.
  • 加载中
    1. [1]

      [1] W. L. Xie, N. Ma, Energy Fuels, 2009, 23, 1347-1353.

    2. [2]

      [2] W. J. Goh, V. S. Makam, J. Hu, L. F. Kang, M. R. Zheng, S. L. Yoong, C. N. B. Udalagama, G. Pastorin, Langmuir, 2012, 28, 16864-16873.

    3. [3]

      [3] L. Wang, X. G. Fan, P. Tang, Q. P. Yuan, J. Chem. Technol. Biotechnol., 2013, 88, 2067-2074.

    4. [4]

      [4] S. J. Bao, X. G. Zhang, X. M. Liu, L. Y. Xin, J. P. Qu, Chin. J. Catal., 2003, 24, 909-913.

    5. [5]

      [5] W. S. Lim, J. W. Lee, Bioresour. Technol., 2013, 130, 97-101.

    6. [6]

      [6] A. Karlsson, A. Aspegren, J. Chromatogr. A, 2000, 866, 15-23.

    7. [7]

      [7] E. Cherian, M. Dharmendirakumar, G. Baska, Chin. J. Catal., 2015, 36, 1223-1229.

    8. [8]

      [8] L. Wang, H. Z. Chen. Process Biochem., 2011, 46, 604-607.

    9. [9]

      [9] N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, M. Ladisch, Bioresour. Technol., 2005, 96, 673-686.

    10. [10]

      [10] Y. Ping, H. Z. Ling, G. Song, J. P. Ge, Biochem. Eng. J., 2013, 75, 86-91.

    11. [11]

      [11] L. L. Ding, B. Zou, H. Q. Liu, Y. N. Li, Z. C. Wang, Y. Su, Y. P. Guo, X. F. Wang, Chem. Eng. J., 2013, 225, 300-305.

    12. [12]

      [12] P. Obama, G. Ricochon, L. Muniglia, N. Brosse, Bioresour. Technol., 2012, 112, 156-163.

    13. [13]

      [13] Q. K. Zhang, X. T. Han, B. Tang, RSC Adv., 2013, 3, 9924-9931.

    14. [14]

      [14] J. S. Lupoi, E. A. Smith, Biotechnol. Bioeng., 2011, 108, 2835-2843.

    15. [15]

      [15] J. L. Rahikainen, J. D. Evans, S. Mikander, A. Kalliola, T. Puranen, T. Tamminen, K. Marjamaa, K. Kruus, Enzyme Microb. Technol., 2013, 53, 315-321.

    16. [16]

      [16] N. K. Pazarlioǧlu, M. Sariişik, A. Telefoncu, Process Biochem., 2005, 40, 767-771.

    17. [17]

      [17] T. C. Hung, C. C. Fu, C. H. Su, J. Y. Chen, W. T. Wu, Y. S. Lin, Enzyme Microb. Technol., 2011, 49, 30-37.

    18. [18]

      [18] Y. Y. Yu, J. G. Yuan, Q. Wang, X. R. Fan, X. Y. Ni, P. Wang, L. Cui, Carbohyd. Polym., 2013, 95, 675-680.

    19. [19]

      [19] A. A. Gokhale, J. Lu, I. Lee, J. Mol. Catal. B, 2013, 90, 76-86.

    20. [20]

      [20] L. Y. Wang, H. X. Wang, A. J. Wang, M. Liu, Chin. J. Catal., 2009, 30, 939-944.

    21. [21]

      [21] F. Liguori, C. Moreno-Marrodan, P. Barbaro, Chin. J. Catal., 2015, 36, 1157-1169.

    22. [22]

      [22] S. H. Huang, M. H. Liao, D. H. Chen, Biotechnol. Prog., 2003, 19, 1095-1100.

    23. [23]

      [23] G. Zheng, S. Yan. Biotechnol. Prog., 2004, 20, 500-506.

    24. [24]

      [24] F. Lopez-Gallego, L. Betancor, C. Mateo, A. Hidalgo, N. Alonso-Morales, G. Dellamora-Ortiz, J. M. Gaisan, R. Fernandez-Lafuente, J. Biotechnol., 2005, 119, 70-75.

    25. [25]

      [25] O. Barbosa, R. Torres, C. Ortiz, R. Fernandez-Lafuente, Process Biochem., 2012, 47, 1220-1227.

    26. [26]

      [26] Y. H. Dong, Y. Cai, Z. K. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang, D. Y. Zhao, J. Am. Chem. Soc., 2010, 132, 8466-8473.

    27. [27]

      [27] S. Laurent, D. Forge, M. Port, A. Roch, C. Robio, L. V. Elst, R. N. Muller, Chem. Rev., 2008, 108, 2064-2110.

    28. [28]

      [28] G. H. Zhao, J. Z. Wang, Y. F. Li, X. Chen, Y. P. Liu, J. Phys. Chem. C, 2011, 115, 6350-6359.

    29. [29]

      [29] R. G. Chaudhuri, S. Paria, Chem. Rev., 2012, 112, 2373-2433.

    30. [30]

      [30] M. Dashtban, M. Maki, K. T. Leung, C. Q. Mao, W. S. Qin, Crit. Rev. Biotechnol., 2010, 30, 302-309.

    31. [31]

      [31] M. Chen, L. M. Xia, P. J. Xue, Int. Biodeter. Biodegr., 2007, 59, 85-89.

    32. [32]

      [32] E. Viola, F. Zimbardi, V. Valerio, F. Nanna, A. Battafarano, Appl. Energy, 2013, 102, 198-203.

    33. [33]

      [33] E. Bahcegul, E. Tatli, N. I. Haykir, S. Apaydin, U. Bakir, Bioresour. Technol., 2011, 102, 9646-9652.

  • 加载中
    1. [1]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    2. [2]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    3. [3]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    8. [8]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    9. [9]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    20. [20]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

Metrics
  • PDF Downloads(1)
  • Abstract views(623)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return