Citation:
Changjun Liu, Minyue Li, Jiaqi Wang, Xintong Zhou, Qiuting Guo, Jinmao Yan, Yingzhi Li. Plasma methods for preparing green catalysts: Current status and perspective[J]. Chinese Journal of Catalysis,
;2016, 37(3): 340-348.
doi:
10.1016/S1872-2067(15)61020-8
-
Most current catalyst preparation methods cause pollution to air, water and land with the use of hazardous chemicals, lengthy operation time, high energy input and excessive water usage. The development of green catalyst preparation is necessary to prevent and eliminate waste from each step of the catalyst preparation. We summarize recent progress in the application of cold plasmas for green catalyst preparation. Cold plasma preparation can reduce the catalyst size, improve the dispersion and enhance catalyst-support interaction with the use of less or no hazardous chemicals. These improvements also lead to the enhancement of catalyst activity and stability. An alternative room temperature electron reduction with a non-hydrogen plasma as an electron source was developed for the reduction of noble metal ions in which no hazardous chemical reducing agent or hydrogen was needed. This creates many opportunities for the development of supported catalysts with heat sensitive substrates, including metal organic frameworks (MOFs), covalent organic framework (COFs), high surface area carbon, peptide, DNA, proteins and others. A novel floating metal catalyst on a water (or solution) surface has been established. Template removal using low temperature cold plasmas also leads to the formation of high surface area porous materials with characteristics that are normally only obtainable with high temperature calcination, but sintering can be avoided. Micro combustion has been developed for the removal of carbon template using cold plasma. This is promising for preparing many structured oxides in a simple way with no use of auxiliary chemicals. Many opportunities exist for the use of cold plasmas to make multi-metallic oxides. Some future development ideas are addressed.
-
Keywords:
- Catalyst preparation,
- Plasma,
- Green chemistry,
- Porous material
-
-
-
[1]
[1] P. T. Anastas, Green Chem., 2003, 5, G29.
-
[2]
[2] M. Y. He, Chin. J. Catal., 2013, 34, 10.
-
[3]
[3] C. J. Liu, J. Y. Ye, J. J. Jiang, Y. X. Pan, ChemCatChem, 2011, 3, 529.
-
[4]
[4] Y. Zhang, D. A. J. M. Ligthart, P. Liu, L. Gao, T. M. W. G. M. Verhoeven, E. J. M. Hensen, Chin. J. Catal., 2014, 35, 1944.
-
[5]
[5] D. F. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. X. Wang, J. G. Wang, X. H. Bao, J. Am. Chem. Soc., 2015, 137, 4288.
-
[6]
[6] S. Liu, Y. Li, W. J. Shen, Chin. J. Catal., 2015, 36, 1409.
-
[7]
[7] N. Ta, J. Liu, W. J. Shen, Chin. J. Catal., 2013, 34, 838.
-
[8]
[8] S. S. Chen, S. Shen, G. J. Liu, Y. Qi, F. X. Zhang, C. Li, Angew. Chem. Int. Ed., 2015, 54, 3047.
-
[9]
[9] T. Niu, G. L. Liu, Y. Liu, Appl. Catal. B, 2014, 154-155, 82.
-
[10]
[10] Y. Ma, X. L. Wang, C. Li, Chin. J. Catal., 2015, 36, 1519.
-
[11]
[11] X. Su, S. T. Xu, P. Tian, J. Z. Li, A. M. Zheng, Q. Wang, M. Yang, Y. X. Wei, F. Deng, Z. M. Liu, J. Phys. Chem. C, 2015, 119, 2589.
-
[12]
[12] X. C. Zhao, J. M. Xu, A. Q. Wang, T. Zhang, Chin. J. Catal., 2015, 36, 1419.
-
[13]
[13] L. J. Xie, F. D. Liu, X. Y. Shi, F. S. Xiao, H. He, Appl. Catal. B, 2015, 179, 206.
-
[14]
[14] Z. F. Qin, J. Ren, M. Q. Miao, Z. Li, J. Y. Lin, K. C. Xie, Appl. Catal. B, 2015, 164, 18.
-
[15]
[15] J. Ye, C. J. Liu, D. H. Mei, Q. F. Ge, ACS Catal., 2013, 3, 1296.
-
[16]
[16] K. H. Sun, Z. G. Fan, J. Y. Ye, J. M. Yan, Q. F. Ge, Y. N. Li, W. J. He, W. M. Yang, C. J. Liu, J. CO2 Utilization, 2015, 12, 1.
-
[17]
[17] Z. W. Wang, B. Li, Y. C. Xin, J. G. Liu, Y. F. Yao, Z. G. Zou,. Chin. J. Catal., 2014, 35, 509.
-
[18]
[18] Z. L. Wu, E. Borretto, J. Medlock, W. Bonrath, G. Cravotto, ChemCatChem, 2014, 6, 2762.
-
[19]
[19] J. J. Wang, C. J. Liu, ChemBioEng Rev., 2015, 2, 335.
-
[20]
[20] Z. Y. Wang, C. J. Liu, Nano Energy, 2015, 11, 277.
-
[21]
[21] X. L. Yan, B. R. Zhao, Y. Liu, Y. N. Li, Catal. Today, 2015, 256, 29.
-
[22]
[22] K. H. Lim, H. Kim, Appl. Catal. B, 2014, 158-159, 355.
-
[23]
[23] S. E. Skrabalak, K. S. Suslick, J. Am. Chem. Soc., 2005, 127, 9990.
-
[24]
[24] C. J. Liu, Y. Zhao, Y. Z. Li, D. S. Zhang, Z. Chang, X. H. Bu, ACS Sustain Chem. Eng., 2014, 2, 3.
-
[25]
[25] S. P. Wen, M. L. Liang, J. M. Zou, S. Wang, X. D. Zhu, L. Liu, Z. J. Wang, J. Mater. Chem. A, 2015, 3, 13299.
-
[26]
[26] Y. L. Hong, X. L. Jing, J. L. Huang, D. H. Sun, T. Odoom-Wubah, F. Yang, M. M. Du, Q. B. Li, ACS Sustain. Chem. Eng., 2014, 2, 1752.
-
[27]
[27] C. J. Liu, G. P. Vissokov, B. W. L. Jang, Catal. Today, 2002, 72, 173.
-
[28]
[28] E. C. Neyts, K. Ostrikov, Catal. Today, 2015, 256, 23.
-
[29]
[29] E. C. Neyts, Frontiers Chem. Sci. Eng., 2015, 9, 154.
-
[30]
[30] W. Somers, A. Bogaerts, A. C. T. van Duin, E. C. Neyts, Appl. Catal. B, 2014, 154, 1.
-
[31]
[31] S. Q. Xiao, S. Xu, X. F. Gu, D. Y. Song, H. P. Zhou, K. Ostrikov, Catal. Today, 2015, 252, 201.
-
[32]
[32] K. Ostrikov, E. C. Neyts, M. Meyyappan, Adv. Phys., 2013, 62, 113.
-
[33]
[33] A. E .Rider, K. Ostrikov, S. A. Furman, Eur. Phys. J. D, 2012, 66, 226.
-
[34]
[34] H. H. Kim, Y. Teramoto, N. Negishi, A. Ogata, Catal. Today, 2015, 256, 13.
-
[35]
[35] Q. T. Guo, P. With, Y. Liu, R. Gläser, C. J. Liu, Catal. Today, 2013, 211, 156.
-
[36]
[36] C. J. Liu, P. Shi, J. J. Jiang, P. Y. Kuai, X. L. Zhu, Y. X. Pan, Y. P. Zhang, ACS Symposium Series, 2010, 1056, 175.
-
[37]
[37] X. T. Zhou, Q. Zhang, C. J. Liu, Frontiers Chem. Sci. Eng., 2014, 8, 73.
-
[38]
[38] Q. D. Sun, B. Yu, C. J. Liu, Plasma Chem. Plasma Process., 2012, 32, 201.
-
[39]
[39] T. M. Shang, J. H. Sun, Q. F. Zhou, M. Y. Guan, Cryst. Res. Technol., 2007, 42, 1002.
-
[40]
[40] Y. H. Xiao, Z. C. Pan, X. L. Tian, H. C. Zhang, X. F. Zeng, C. M. Xiao, G. H. Hu, Z. G. Wei, Mater. Lett., 2014, 131, 94.
-
[41]
[41] W. Y. Wu, W. Y. Kung, J. M. Ting, J. Am. Ceram. Soc., 2011, 94, 699.
-
[42]
[42] Y. X. Pan, P. Y. Kuai, Y. Liu, Q. F. Ge, C. J. Liu, Energy Environ. Sci., 2010, 3, 1322.
-
[43]
[43] X. Y. Chai, S. Y. Shang, G. H. Liu, X. M. Tao, X. Li, M. G. Bai, X. Y. Dai, Y. X. Yin, Chin. J. Catal., 2010, 31, 353.
-
[44]
[44] X. L. Zhu, P. P. Huo, Y. P. Zhang, D. G. Cheng, C. J. Liu, Appl. Catal. B, 2008, 81, 132.
-
[45]
[45] Y. Zhang, W. Chu, W. M. Cao, C. R. Luo, X. G. Wen, K. L. Zhou, Plasma Chem. Plasma Process., 2000, 20, 137.
-
[46]
[46] Y. X. Pan, C. J. Liu, P. Shi, J. Power Sources, 2008, 176, 46.
-
[47]
[47] X. L. Yan, Y. Liu, B. R. Zhao, Y. Wang, C. J. Liu, Phys. Chem. Chem. Phys., 2013, 15, 12132.
-
[48]
[48] X. L. Yan, Y. Liu, B. R. Zhao, Z. Wang, Y. Wang, C. J. Liu, Int. J. Hydrogen Energy, 2013, 38, 2283.
-
[49]
[49] Y. Li, Z. H. Wei, Y. Wang, Frontiers Chem. Sci. Eng., 2014, 8, 133.
-
[50]
[50] P. Qin, H. Y. Xu, H. L. Long, Y. Ran, S. Y. Shang, Y. X. Yin, X. Y. Dai, J. Nat. Gas. Chem., 2011, 20, 487.
-
[51]
[51] P. Qin, H. Y. Xu, H. L. Long, Y. Ran, S. Y. Shang, W. Chu, Y. X. Yin, X. Y. Dai, Chin. J. Catal., 2011, 32, 1262.
-
[52]
[52] Z. G. Fan, K. H. Sun, N. Rui, B. R. Zhao, C. J. Liu, J. Energy Chem., 2015, doi,10.1016/j.jechem.2015.09.004
-
[53]
[53] B. R. Zhao, X. L. Yan, Y. Zhou, C. J. Liu, Ind. Eng. Chem. Res., 2013, 52, 8182.
-
[54]
[54] H. G. Peng, Y. H. Ma, W. M. Liu, X. L. Xu, X. Z. Fang, J. Lian, X. Wang, C. Q. Li, W. F. Zhou, P. Yuan, J. Energy Chem., 2015, 24, 416.
-
[55]
[55] P. Estifaee, M. Haghighi, A. A. Babaluo, N. Rahemi, M. F. Jafari, J. Power Sources, 2014, 257, 364.
-
[56]
[56] X. Z. Wang, W. Y. Xu, N. Liu, Z. F. Yu, Y. Li, J. S. Qiu, Catal. Today, 2015, 256, 203.
-
[57]
[57] W. Hua, L. J. Jin, X. F. He, J. H. Liu, H. Q. Hu, Catal. Commun., 2011, 11, 968.
-
[58]
[58] L. J. Jin, Y. Li, P. Lin, H. Q. Hu, Int. J. Hydrogen Energy, 2014, 39, 5756.
-
[59]
[59] Y. W. Wu, W. C. Chung, M. B. Chang, Int. J. Hydrogen Energy, 2015, 40, 8071.
-
[60]
[60] J. Karuppiah, Y. S. Mok, Int. J. Hydrogen Energy, 2014, 39, 16329.
-
[61]
[61] Z. J. Xu, B. Qi, L. B. Di, X. L. Zhang, J. Energy Chem., 2014, 23, 679.
-
[62]
[62] W. J. Xu, Z. B. Zhan, L. B. Di, X. L. Zhang, Catal. Today, 2015, 256, 148.
-
[63]
[63] L. B. Di, Z. J. Xu, K. Wang, X. L. Zhang, Catal. Today, 2013, 211, 109.
-
[64]
[64] S. Zhang, C. Y. Chen, B. W. L. Jang, A. M. Zhu, Catal. Today, 2015, 256, 161.
-
[65]
[65] Y. Liu, Y. X. Pan, Z. J. Wang, P. Y. Kuai, C. J. Liu, Catal. Commun., 2010, 11, 551.
-
[66]
[66] Y. Liu, Y. X. Pan, P. Y. Kuai, C. J. Liu, Catal. Lett., 2010, 135, 241.
-
[67]
[67] Y. Liu, Z. Wang, C. J. Liu, Catal. Today, 2015, 256, 137.
-
[68]
[68] M. H. Yuan, L. F. Wang, R. T. Yang, Langmuir, 2014, 30, 8124.
-
[69]
[69] Z. J. Wang, Y. B. Xie, C. J. Liu, J. Phys. Chem. C, 2008, 112, 19818.
-
[70]
[70] Y. Zhou, Z. Y. Wang, C. J. Liu, Catal. Sci. Technol., 2015, 5, 69.
-
[71]
[71] R. Buitrago-Sierra, M. J. García-Fernández, M. M. Pastor-Blas, E. Sepúlveda, Green Chem., 2013, 15, 1981.
-
[72]
[72] Y. Z. Li, Y. Yu, J. G. Wang, J. Song, Q. Li, M. D. Dong, C. J. Liu, Appl. Catal. B, 2012, 125, 189.
-
[73]
[73] Y. W. Li, R. T. Yang, C. J. Liu, Z. Wang, Ind. Eng. Chem. Res., 2007, 46, 8277.
-
[74]
[74] Z. Wang, R. T. Yang, J. Phys. Chem. C, 2010, 114, 5956.
-
[75]
[75] J. M. Yan, Y. X. Pan, A. G. Cheetham, Y. A. Lin, W. Wang, H. G. Cui, C. J. Liu, Langmuir, 2013, 29, 16051.
-
[76]
[76] Z. J. Wang, Y. Zhao, L. Cui, H. Y. Du, P. Yao, C. J. Liu, Green Chem., 2007, 9, 554.
-
[77]
[77] C. J. Liu, K. L. Yu, X. L. Zhu, Y. P. Zhang, F. He, B. Eliasson, Appl. Catal. B, 2004, 47, 95.
-
[78]
[78] H. P. Wang, C. J. Liu, Appl. Catal. B, 2011, 106, 672.
-
[79]
[79] W. Chu, J. Q. Xu, J. P. Hong, T. Lin, A. Khodakov, Catal. Today, 2015, 256, 41.
-
[80]
[80] M. V. Naseh, A. A. Khodadadi, Y. Mortazavi, F. Pourfayaz, O. Alizadeh, M. Maghrebi, Carbon, 2010, 48, 1369.
-
[81]
[81] L. M. Zhang, S. Diao, Y. F. Nie, K. Yan, N. Liu, B. Y. Dai, Q. Xie, A. Reina, J. Kong, Z. F. Liu, J. Am. Chem. Soc., 2011, 133, 2706.
-
[82]
[82] J. Liu, Y. H. Xue, M. Zhang, L. M. Dai, MRS Bull., 2012, 37, 1265.
-
[83]
[83] M. Laurent-Brocq, N. Job, D. Eskenazi, J. J. Pireaux, Appl. Catal. B, 2014, 147, 453.
-
[84]
[84] H. H. Yi, S. Z. Zhao, X. L. Tang, C. Y. Song, F. Y. Gao, B. W. Zhang, Z. X. Wang, Y. R. Zuo, Fuel, 2014, 128, 268.
-
[85]
[85] J. J. Wang, Z. Y. Wang, C. J. Liu, ACS Appl. Mater. Inter., 2014, 6, 12860.
-
[86]
[86] D. González-Flores, I. Sánchez, I. Zaharieva, K. Klingan, J. Heidkamp, P. Chernev, P. W. Menezes, M. Driess, H. Dau, M. L. Montero, Angew. Chem. Int. Ed., 2015, 54, 2472.
-
[87]
[87] Y. Zhou, C. J. Liu, Plasma. Chem. Plasma. Process, 2011, 31, 499.
-
[88]
[88] Y. Zhao, C. L. Zhong, C. J. Liu, Catal. Commun., 2013, 38, 74.
-
[89]
[89] J. Y. Ye, C. J. Liu, Chem. Commun., 2011, 47, 2167.
-
[90]
[90] Y. S. Nam, A. P. Mayar, D. Lee, J. W. Kim, D. S. Yun, H. Park, T. S. Pollom Jr., D. A. Weitz, A. M. Belcher, Nat. Nanotechnol., 2010, 5, 340.
-
[91]
[91] J. H. Kim, M. Lee, J. S. Lee, C. B. Park, Angew. Chem. Int. Ed., 2012, 51, 517.
-
[92]
[92] P. K. Dutta, R. Varghese, J. Nangreave, S. Lin, H. Yan, Y. Liu, J. Am. Chem. Soc., 2011, 133, 11985.
-
[93]
[93] Y. J. Li, Y. Huang, Adv. Mater., 2010, 22, 1921.
-
[94]
[94] R. Bhandari, D. B. Pacardo, N. M. Bedford, R. R. Naik, M. R. Knecht, J. Phys. Chem. C, 2013, 117, 18053.
-
[95]
[95] A. Molnar, ChemCatChen, 2015, 7, 2025.
-
[96]
[96] Y. X. Pan, H. P. Cong, Y. L. Men, S. Xin, Z. Q. Sun, C. J. Liu, S. H. Yu, ACS Nano, 2015, 9, 11258.
-
[97]
[97] Y. X. Pan, C. J. Liu, S. Zhang, Y. Yu, M. D. Dong, Chem. Eur. J., 2012, 18, 14614.
-
[98]
[98] L. Qin, Z. W. Li, Z. H. Xu, X. W. Guo, G. L. Zhang, Appl. Catal. B, 2015, 179, 500.
-
[99]
[99] M. M. Zhang, Y. Gao, C. Li, C. H. Liang, Chin. J. Catal., 2015, 36, 588.
-
[100]
[100] Z. Y. Wang, J. J. Wang, M. Y. Li, K. H. Sun, C. J. Liu, Sci. Rep. UK, 2014, 4, 5939.
-
[101]
[101] J. Wang, C. F. Wang, S. Chen, Angew. Chem. Int. Ed., 2012, 51, 9297.
-
[1]
-
-
-
[1]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[2]
Jihua Deng , Xinshi Wu , Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046
-
[3]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[4]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[5]
Yiming Lu , Xiang Xie , Xiaoqing Qiu , Yang Liu , Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061
-
[6]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[7]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[8]
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
-
[9]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[10]
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
-
[11]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[12]
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
-
[13]
Yunchao Li , Shanying Chen , Ke Qi , Kangning Huo , Shuxin Li , Jingyi Li , Ying Wei , Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063
-
[14]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[15]
Zhilian Liu , Wengui Wang , Hongxiao Yang , Yu Cui , Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012
-
[16]
Ruiyuan Xu , Yuxin Wang , Yuru Zhang , Wanmei Li . Who Destroyed Snowflake Castle. University Chemistry, 2024, 39(9): 224-228. doi: 10.12461/PKU.DXHX202311056
-
[17]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[18]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[19]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[20]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(473)
- HTML views(74)