Citation: Changjun Liu, Minyue Li, Jiaqi Wang, Xintong Zhou, Qiuting Guo, Jinmao Yan, Yingzhi Li. Plasma methods for preparing green catalysts: Current status and perspective[J]. Chinese Journal of Catalysis, ;2016, 37(3): 340-348. doi: 10.1016/S1872-2067(15)61020-8 shu

Plasma methods for preparing green catalysts: Current status and perspective

  • Corresponding author: Changjun Liu, 
  • Received Date: 13 October 2015
    Available Online: 13 November 2015

    Fund Project: 国家自然科学基金(20990223和21476157). (20990223和21476157)

  • Most current catalyst preparation methods cause pollution to air, water and land with the use of hazardous chemicals, lengthy operation time, high energy input and excessive water usage. The development of green catalyst preparation is necessary to prevent and eliminate waste from each step of the catalyst preparation. We summarize recent progress in the application of cold plasmas for green catalyst preparation. Cold plasma preparation can reduce the catalyst size, improve the dispersion and enhance catalyst-support interaction with the use of less or no hazardous chemicals. These improvements also lead to the enhancement of catalyst activity and stability. An alternative room temperature electron reduction with a non-hydrogen plasma as an electron source was developed for the reduction of noble metal ions in which no hazardous chemical reducing agent or hydrogen was needed. This creates many opportunities for the development of supported catalysts with heat sensitive substrates, including metal organic frameworks (MOFs), covalent organic framework (COFs), high surface area carbon, peptide, DNA, proteins and others. A novel floating metal catalyst on a water (or solution) surface has been established. Template removal using low temperature cold plasmas also leads to the formation of high surface area porous materials with characteristics that are normally only obtainable with high temperature calcination, but sintering can be avoided. Micro combustion has been developed for the removal of carbon template using cold plasma. This is promising for preparing many structured oxides in a simple way with no use of auxiliary chemicals. Many opportunities exist for the use of cold plasmas to make multi-metallic oxides. Some future development ideas are addressed.
  • 加载中
    1. [1]

      [1] P. T. Anastas, Green Chem., 2003, 5, G29.

    2. [2]

      [2] M. Y. He, Chin. J. Catal., 2013, 34, 10.

    3. [3]

      [3] C. J. Liu, J. Y. Ye, J. J. Jiang, Y. X. Pan, ChemCatChem, 2011, 3, 529.

    4. [4]

      [4] Y. Zhang, D. A. J. M. Ligthart, P. Liu, L. Gao, T. M. W. G. M. Verhoeven, E. J. M. Hensen, Chin. J. Catal., 2014, 35, 1944.

    5. [5]

      [5] D. F. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. X. Wang, J. G. Wang, X. H. Bao, J. Am. Chem. Soc., 2015, 137, 4288.

    6. [6]

      [6] S. Liu, Y. Li, W. J. Shen, Chin. J. Catal., 2015, 36, 1409.

    7. [7]

      [7] N. Ta, J. Liu, W. J. Shen, Chin. J. Catal., 2013, 34, 838.

    8. [8]

      [8] S. S. Chen, S. Shen, G. J. Liu, Y. Qi, F. X. Zhang, C. Li, Angew. Chem. Int. Ed., 2015, 54, 3047.

    9. [9]

      [9] T. Niu, G. L. Liu, Y. Liu, Appl. Catal. B, 2014, 154-155, 82.

    10. [10]

      [10] Y. Ma, X. L. Wang, C. Li, Chin. J. Catal., 2015, 36, 1519.

    11. [11]

      [11] X. Su, S. T. Xu, P. Tian, J. Z. Li, A. M. Zheng, Q. Wang, M. Yang, Y. X. Wei, F. Deng, Z. M. Liu, J. Phys. Chem. C, 2015, 119, 2589.

    12. [12]

      [12] X. C. Zhao, J. M. Xu, A. Q. Wang, T. Zhang, Chin. J. Catal., 2015, 36, 1419.

    13. [13]

      [13] L. J. Xie, F. D. Liu, X. Y. Shi, F. S. Xiao, H. He, Appl. Catal. B, 2015, 179, 206.

    14. [14]

      [14] Z. F. Qin, J. Ren, M. Q. Miao, Z. Li, J. Y. Lin, K. C. Xie, Appl. Catal. B, 2015, 164, 18.

    15. [15]

      [15] J. Ye, C. J. Liu, D. H. Mei, Q. F. Ge, ACS Catal., 2013, 3, 1296.

    16. [16]

      [16] K. H. Sun, Z. G. Fan, J. Y. Ye, J. M. Yan, Q. F. Ge, Y. N. Li, W. J. He, W. M. Yang, C. J. Liu, J. CO2 Utilization, 2015, 12, 1.

    17. [17]

      [17] Z. W. Wang, B. Li, Y. C. Xin, J. G. Liu, Y. F. Yao, Z. G. Zou,. Chin. J. Catal., 2014, 35, 509.

    18. [18]

      [18] Z. L. Wu, E. Borretto, J. Medlock, W. Bonrath, G. Cravotto, ChemCatChem, 2014, 6, 2762.

    19. [19]

      [19] J. J. Wang, C. J. Liu, ChemBioEng Rev., 2015, 2, 335.

    20. [20]

      [20] Z. Y. Wang, C. J. Liu, Nano Energy, 2015, 11, 277.

    21. [21]

      [21] X. L. Yan, B. R. Zhao, Y. Liu, Y. N. Li, Catal. Today, 2015, 256, 29.

    22. [22]

      [22] K. H. Lim, H. Kim, Appl. Catal. B, 2014, 158-159, 355.

    23. [23]

      [23] S. E. Skrabalak, K. S. Suslick, J. Am. Chem. Soc., 2005, 127, 9990.

    24. [24]

      [24] C. J. Liu, Y. Zhao, Y. Z. Li, D. S. Zhang, Z. Chang, X. H. Bu, ACS Sustain Chem. Eng., 2014, 2, 3.

    25. [25]

      [25] S. P. Wen, M. L. Liang, J. M. Zou, S. Wang, X. D. Zhu, L. Liu, Z. J. Wang, J. Mater. Chem. A, 2015, 3, 13299.

    26. [26]

      [26] Y. L. Hong, X. L. Jing, J. L. Huang, D. H. Sun, T. Odoom-Wubah, F. Yang, M. M. Du, Q. B. Li, ACS Sustain. Chem. Eng., 2014, 2, 1752.

    27. [27]

      [27] C. J. Liu, G. P. Vissokov, B. W. L. Jang, Catal. Today, 2002, 72, 173.

    28. [28]

      [28] E. C. Neyts, K. Ostrikov, Catal. Today, 2015, 256, 23.

    29. [29]

      [29] E. C. Neyts, Frontiers Chem. Sci. Eng., 2015, 9, 154.

    30. [30]

      [30] W. Somers, A. Bogaerts, A. C. T. van Duin, E. C. Neyts, Appl. Catal. B, 2014, 154, 1.

    31. [31]

      [31] S. Q. Xiao, S. Xu, X. F. Gu, D. Y. Song, H. P. Zhou, K. Ostrikov, Catal. Today, 2015, 252, 201.

    32. [32]

      [32] K. Ostrikov, E. C. Neyts, M. Meyyappan, Adv. Phys., 2013, 62, 113.

    33. [33]

      [33] A. E .Rider, K. Ostrikov, S. A. Furman, Eur. Phys. J. D, 2012, 66, 226.

    34. [34]

      [34] H. H. Kim, Y. Teramoto, N. Negishi, A. Ogata, Catal. Today, 2015, 256, 13.

    35. [35]

      [35] Q. T. Guo, P. With, Y. Liu, R. Gläser, C. J. Liu, Catal. Today, 2013, 211, 156.

    36. [36]

      [36] C. J. Liu, P. Shi, J. J. Jiang, P. Y. Kuai, X. L. Zhu, Y. X. Pan, Y. P. Zhang, ACS Symposium Series, 2010, 1056, 175.

    37. [37]

      [37] X. T. Zhou, Q. Zhang, C. J. Liu, Frontiers Chem. Sci. Eng., 2014, 8, 73.

    38. [38]

      [38] Q. D. Sun, B. Yu, C. J. Liu, Plasma Chem. Plasma Process., 2012, 32, 201.

    39. [39]

      [39] T. M. Shang, J. H. Sun, Q. F. Zhou, M. Y. Guan, Cryst. Res. Technol., 2007, 42, 1002.

    40. [40]

      [40] Y. H. Xiao, Z. C. Pan, X. L. Tian, H. C. Zhang, X. F. Zeng, C. M. Xiao, G. H. Hu, Z. G. Wei, Mater. Lett., 2014, 131, 94.

    41. [41]

      [41] W. Y. Wu, W. Y. Kung, J. M. Ting, J. Am. Ceram. Soc., 2011, 94, 699.

    42. [42]

      [42] Y. X. Pan, P. Y. Kuai, Y. Liu, Q. F. Ge, C. J. Liu, Energy Environ. Sci., 2010, 3, 1322.

    43. [43]

      [43] X. Y. Chai, S. Y. Shang, G. H. Liu, X. M. Tao, X. Li, M. G. Bai, X. Y. Dai, Y. X. Yin, Chin. J. Catal., 2010, 31, 353.

    44. [44]

      [44] X. L. Zhu, P. P. Huo, Y. P. Zhang, D. G. Cheng, C. J. Liu, Appl. Catal. B, 2008, 81, 132.

    45. [45]

      [45] Y. Zhang, W. Chu, W. M. Cao, C. R. Luo, X. G. Wen, K. L. Zhou, Plasma Chem. Plasma Process., 2000, 20, 137.

    46. [46]

      [46] Y. X. Pan, C. J. Liu, P. Shi, J. Power Sources, 2008, 176, 46.

    47. [47]

      [47] X. L. Yan, Y. Liu, B. R. Zhao, Y. Wang, C. J. Liu, Phys. Chem. Chem. Phys., 2013, 15, 12132.

    48. [48]

      [48] X. L. Yan, Y. Liu, B. R. Zhao, Z. Wang, Y. Wang, C. J. Liu, Int. J. Hydrogen Energy, 2013, 38, 2283.

    49. [49]

      [49] Y. Li, Z. H. Wei, Y. Wang, Frontiers Chem. Sci. Eng., 2014, 8, 133.

    50. [50]

      [50] P. Qin, H. Y. Xu, H. L. Long, Y. Ran, S. Y. Shang, Y. X. Yin, X. Y. Dai, J. Nat. Gas. Chem., 2011, 20, 487.

    51. [51]

      [51] P. Qin, H. Y. Xu, H. L. Long, Y. Ran, S. Y. Shang, W. Chu, Y. X. Yin, X. Y. Dai, Chin. J. Catal., 2011, 32, 1262.

    52. [52]

      [52] Z. G. Fan, K. H. Sun, N. Rui, B. R. Zhao, C. J. Liu, J. Energy Chem., 2015, doi,10.1016/j.jechem.2015.09.004

    53. [53]

      [53] B. R. Zhao, X. L. Yan, Y. Zhou, C. J. Liu, Ind. Eng. Chem. Res., 2013, 52, 8182.

    54. [54]

      [54] H. G. Peng, Y. H. Ma, W. M. Liu, X. L. Xu, X. Z. Fang, J. Lian, X. Wang, C. Q. Li, W. F. Zhou, P. Yuan, J. Energy Chem., 2015, 24, 416.

    55. [55]

      [55] P. Estifaee, M. Haghighi, A. A. Babaluo, N. Rahemi, M. F. Jafari, J. Power Sources, 2014, 257, 364.

    56. [56]

      [56] X. Z. Wang, W. Y. Xu, N. Liu, Z. F. Yu, Y. Li, J. S. Qiu, Catal. Today, 2015, 256, 203.

    57. [57]

      [57] W. Hua, L. J. Jin, X. F. He, J. H. Liu, H. Q. Hu, Catal. Commun., 2011, 11, 968.

    58. [58]

      [58] L. J. Jin, Y. Li, P. Lin, H. Q. Hu, Int. J. Hydrogen Energy, 2014, 39, 5756.

    59. [59]

      [59] Y. W. Wu, W. C. Chung, M. B. Chang, Int. J. Hydrogen Energy, 2015, 40, 8071.

    60. [60]

      [60] J. Karuppiah, Y. S. Mok, Int. J. Hydrogen Energy, 2014, 39, 16329.

    61. [61]

      [61] Z. J. Xu, B. Qi, L. B. Di, X. L. Zhang, J. Energy Chem., 2014, 23, 679.

    62. [62]

      [62] W. J. Xu, Z. B. Zhan, L. B. Di, X. L. Zhang, Catal. Today, 2015, 256, 148.

    63. [63]

      [63] L. B. Di, Z. J. Xu, K. Wang, X. L. Zhang, Catal. Today, 2013, 211, 109.

    64. [64]

      [64] S. Zhang, C. Y. Chen, B. W. L. Jang, A. M. Zhu, Catal. Today, 2015, 256, 161.

    65. [65]

      [65] Y. Liu, Y. X. Pan, Z. J. Wang, P. Y. Kuai, C. J. Liu, Catal. Commun., 2010, 11, 551.

    66. [66]

      [66] Y. Liu, Y. X. Pan, P. Y. Kuai, C. J. Liu, Catal. Lett., 2010, 135, 241.

    67. [67]

      [67] Y. Liu, Z. Wang, C. J. Liu, Catal. Today, 2015, 256, 137.

    68. [68]

      [68] M. H. Yuan, L. F. Wang, R. T. Yang, Langmuir, 2014, 30, 8124.

    69. [69]

      [69] Z. J. Wang, Y. B. Xie, C. J. Liu, J. Phys. Chem. C, 2008, 112, 19818.

    70. [70]

      [70] Y. Zhou, Z. Y. Wang, C. J. Liu, Catal. Sci. Technol., 2015, 5, 69.

    71. [71]

      [71] R. Buitrago-Sierra, M. J. García-Fernández, M. M. Pastor-Blas, E. Sepúlveda, Green Chem., 2013, 15, 1981.

    72. [72]

      [72] Y. Z. Li, Y. Yu, J. G. Wang, J. Song, Q. Li, M. D. Dong, C. J. Liu, Appl. Catal. B, 2012, 125, 189.

    73. [73]

      [73] Y. W. Li, R. T. Yang, C. J. Liu, Z. Wang, Ind. Eng. Chem. Res., 2007, 46, 8277.

    74. [74]

      [74] Z. Wang, R. T. Yang, J. Phys. Chem. C, 2010, 114, 5956.

    75. [75]

      [75] J. M. Yan, Y. X. Pan, A. G. Cheetham, Y. A. Lin, W. Wang, H. G. Cui, C. J. Liu, Langmuir, 2013, 29, 16051.

    76. [76]

      [76] Z. J. Wang, Y. Zhao, L. Cui, H. Y. Du, P. Yao, C. J. Liu, Green Chem., 2007, 9, 554.

    77. [77]

      [77] C. J. Liu, K. L. Yu, X. L. Zhu, Y. P. Zhang, F. He, B. Eliasson, Appl. Catal. B, 2004, 47, 95.

    78. [78]

      [78] H. P. Wang, C. J. Liu, Appl. Catal. B, 2011, 106, 672.

    79. [79]

      [79] W. Chu, J. Q. Xu, J. P. Hong, T. Lin, A. Khodakov, Catal. Today, 2015, 256, 41.

    80. [80]

      [80] M. V. Naseh, A. A. Khodadadi, Y. Mortazavi, F. Pourfayaz, O. Alizadeh, M. Maghrebi, Carbon, 2010, 48, 1369.

    81. [81]

      [81] L. M. Zhang, S. Diao, Y. F. Nie, K. Yan, N. Liu, B. Y. Dai, Q. Xie, A. Reina, J. Kong, Z. F. Liu, J. Am. Chem. Soc., 2011, 133, 2706.

    82. [82]

      [82] J. Liu, Y. H. Xue, M. Zhang, L. M. Dai, MRS Bull., 2012, 37, 1265.

    83. [83]

      [83] M. Laurent-Brocq, N. Job, D. Eskenazi, J. J. Pireaux, Appl. Catal. B, 2014, 147, 453.

    84. [84]

      [84] H. H. Yi, S. Z. Zhao, X. L. Tang, C. Y. Song, F. Y. Gao, B. W. Zhang, Z. X. Wang, Y. R. Zuo, Fuel, 2014, 128, 268.

    85. [85]

      [85] J. J. Wang, Z. Y. Wang, C. J. Liu, ACS Appl. Mater. Inter., 2014, 6, 12860.

    86. [86]

      [86] D. González-Flores, I. Sánchez, I. Zaharieva, K. Klingan, J. Heidkamp, P. Chernev, P. W. Menezes, M. Driess, H. Dau, M. L. Montero, Angew. Chem. Int. Ed., 2015, 54, 2472.

    87. [87]

      [87] Y. Zhou, C. J. Liu, Plasma. Chem. Plasma. Process, 2011, 31, 499.

    88. [88]

      [88] Y. Zhao, C. L. Zhong, C. J. Liu, Catal. Commun., 2013, 38, 74.

    89. [89]

      [89] J. Y. Ye, C. J. Liu, Chem. Commun., 2011, 47, 2167.

    90. [90]

      [90] Y. S. Nam, A. P. Mayar, D. Lee, J. W. Kim, D. S. Yun, H. Park, T. S. Pollom Jr., D. A. Weitz, A. M. Belcher, Nat. Nanotechnol., 2010, 5, 340.

    91. [91]

      [91] J. H. Kim, M. Lee, J. S. Lee, C. B. Park, Angew. Chem. Int. Ed., 2012, 51, 517.

    92. [92]

      [92] P. K. Dutta, R. Varghese, J. Nangreave, S. Lin, H. Yan, Y. Liu, J. Am. Chem. Soc., 2011, 133, 11985.

    93. [93]

      [93] Y. J. Li, Y. Huang, Adv. Mater., 2010, 22, 1921.

    94. [94]

      [94] R. Bhandari, D. B. Pacardo, N. M. Bedford, R. R. Naik, M. R. Knecht, J. Phys. Chem. C, 2013, 117, 18053.

    95. [95]

      [95] A. Molnar, ChemCatChen, 2015, 7, 2025.

    96. [96]

      [96] Y. X. Pan, H. P. Cong, Y. L. Men, S. Xin, Z. Q. Sun, C. J. Liu, S. H. Yu, ACS Nano, 2015, 9, 11258.

    97. [97]

      [97] Y. X. Pan, C. J. Liu, S. Zhang, Y. Yu, M. D. Dong, Chem. Eur. J., 2012, 18, 14614.

    98. [98]

      [98] L. Qin, Z. W. Li, Z. H. Xu, X. W. Guo, G. L. Zhang, Appl. Catal. B, 2015, 179, 500.

    99. [99]

      [99] M. M. Zhang, Y. Gao, C. Li, C. H. Liang, Chin. J. Catal., 2015, 36, 588.

    100. [100]

      [100] Z. Y. Wang, J. J. Wang, M. Y. Li, K. H. Sun, C. J. Liu, Sci. Rep. UK, 2014, 4, 5939.

    101. [101]

      [101] J. Wang, C. F. Wang, S. Chen, Angew. Chem. Int. Ed., 2012, 51, 9297.

  • 加载中
    1. [1]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    2. [2]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    3. [3]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    5. [5]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    6. [6]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    7. [7]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    8. [8]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    9. [9]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    10. [10]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    16. [16]

      Ruiyuan Xu Yuxin Wang Yuru Zhang Wanmei Li . Who Destroyed Snowflake Castle. University Chemistry, 2024, 39(9): 224-228. doi: 10.12461/PKU.DXHX202311056

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

Metrics
  • PDF Downloads(2)
  • Abstract views(473)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return