Citation: Liang Hao, Guang Xiong, Liping Liu, Huayun Long, Fengying Jin, Xiangsheng Wang. Preparation of highly dispersed desulfurization catalysts and their catalytic performance in hydrodesulfurization of dibenzothiophene[J]. Chinese Journal of Catalysis, ;2016, 37(3): 412-419. doi: 10.1016/S1872-2067(15)61017-8 shu

Preparation of highly dispersed desulfurization catalysts and their catalytic performance in hydrodesulfurization of dibenzothiophene

  • Corresponding author: Liping Liu, 
  • Received Date: 15 October 2015
    Available Online: 12 November 2015

    Fund Project: 国家自然科学基金(21206017). (21206017)

  • Micro-mesoporous ZK-1 molecular sieves with different Si/Al ratios were used as supports for binary Co-Mo hydrodesulfurization (HDS) catalysts. The CoMo/ZK-1 catalysts were prepared using an over-loading impregnation method, and characterized using N2 physisorption, X-ray diffraction, temperature-programmed NH3 desorption, temperature-programmed reduction (TPR), ultraviolet-visible diffuse reflectance spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The results show that the CoMo/ZK-1 catalysts have high surface areas (~700 m2/g), large pore volumes, and hierarchical porous structures, which promote the dispersion of Co and Mo oxide phases on the ZK-1 supports. The TPR results show that the interactions between the Co and Mo oxide phases and the ZK-1 support are weaker than those in the CoMo/γ-Al2O3 catalyst. The HRTEM results show that the CoMo/ZK-1 catalysts have better MoS2 dispersion and more active edge sites. The catalysts were tested in HDS of dibenzothiophene. Under mild reaction conditions, the activity of Co and Mo sulfides supported on ZK-1 was higher than those of Co and Mo sulfides supported on ZSM-5, AlKIT-1, and γ-Al2O3.
  • 加载中
    1. [1]

      [1] C. S. Song, Catal. Today, 2003, 86, 211.

    2. [2]

      [2] H. Topsφe, B. S. Clausen, Appl. Catal., 1986, 25, 273.

    3. [3]

      [3] X. C. Fang, R. Guo, C. M. Yang, Chin. J. Catal., 2013, 34, 130.

    4. [4]

      [4] Z. B. Wei, Q. Xin, Chin. J. Catal., 1994, 15, 161.

    5. [5]

      [5] S. Y. Ren, J. Li, B. Feng, Y. D. Wang, W. C. Zhang, G. M. Wen, Z. H. Zhang, B. J. Shen, Catal. Today, 2015, doi: 10.1016/j.cattod.2015. 06.023.

    6. [6]

      [6] M. V. Landau, L. Vradman, M. Herskowitz, Y. Koltypin, A. Gedanken, J. Catal., 2001, 201, 22.

    7. [7]

      [7] X. Li, F. Zhou, A. J. Wang, L. Y. Wang, Y. K. Hu, Ind. Eng. Chem. Res., 2009, 48, 2870.

    8. [8]

      [8] K. Soni, K. C. Mouli, A. K. Dalai, J. Adjaye, Catal. Lett., 2010, 136, 116.

    9. [9]

      [9] R. Nava, A. Infantes-Molina, P. Castano, R. Guil-Lopez, B. Pawelec, Fuel, 2011, 90, 2726.

    10. [10]

      [10] K. Soni, B. S. Rana, A. K. Sinha, A. Bhaumik, M. Nandi, M. Kumar, G. M. Dhar, Appl. Catal. B, 2009, 90, 55.

    11. [11]

      [11] Y. H. Yue, Y. Sun, Z. Gao, Catal. Lett., 1997, 47, 167.

    12. [12]

      [12] Z. D. Huang, W. Bensch, L. Kienle, S. Fuentes, G. Alonso, C. Ornelas, Catal. Lett., 2009, 127, 132.

    13. [13]

      [13] R. Ryoo, J. M. Kim, C. H. Ko, C. H. Shin, J. Phys. Chem., 1996, 100, 17718.

    14. [14]

      [14] F. Zhou, X. Li, A. J. Wang, L. Y. Wang, X. D. Yang, Y. K. Hu, Catal. Today, 2010, 150, 218.

    15. [15]

      [15] S. Q. Zeng, J. Blanchard, M. Breysse, Y. H. Shi, X. T. Su, H. Nie, D. D. Li, Appl. Catal. A, 2006, 298, 88.

    16. [16]

      [16] M. Choi, H. S. Cho, R. Srivastava, C. Venkatesan, D. H. Choi, R. Ryoo, Nat. Mater., 2006, 5, 718.

    17. [17]

      [17] D. Q. Zhang, A. J. Duan, Z. Zhao, C. M. Xu, J. Catal., 2010, 274, 273.

    18. [18]

      [18] T. S. Li, A. J. Duan, Z. Zhao, B. J. Liu, G. Y. Jiang, J. Liu, Y. C. Wei, H. F. Pan, Fuel, 2014, 117, 974.

    19. [19]

      [19] Y. Y. Sun, R. Prins, Angew. Chem. Int. Ed., 2008, 47, 8478.

    20. [20]

      [20] L. P. Liu, G. Xiong, X. S. Wang, J. Cai, Z. Zhao, Microporous Mesoporous Mater., 2009, 123, 221.

    21. [21]

      [21] L. P. Liu, F. Y. Jin, G. Xiong, H. Y. Long, X. S. Wang, J. Porous Mater., 2013, 20, 637.

    22. [22]

      [22] D. H. Olson, G. T. Kokotailo, S. L. Lawton, W. M. Meier, J. Phys. Chem., 1981, 85, 2238.

    23. [23]

      [23] R. Nava, B. Pawelec, J. Morales, R. A. Ortega, J. L. G. Fierro, Microporous Mesoporous Mater., 2009, 118, 189.

    24. [24]

      [24] S. Damyanova, A. Spojakina, K. Jiratova, Appl. Catal. A, 1995, 125, 257.

    25. [25]

      [25] D. C. Vermaire, P. C. Van Berge, J. Catal., 1989, 116, 309.

    26. [26]

      [26] G. Xiong, C. Li, Z. C. Feng, P. L. Ying, Q. Xin, J. K. Liu, J. Catal., 1999, 186, 234.

    27. [27]

      [27] J. Ramirez, R. Contreras, P. Castillo, T. Klimova, R. Zarate, R. Luna, Appl. Catal. A, 2000, 197, 69.

    28. [28]

      [28] Ch. Papadopoulou, J. Vakros, H. K. Matralis, G. A. Voyiatzis, Ch. Kordulis, J. Colloid. Interface. Sci., 2004, 274, 159.

    29. [29]

      [29] H. K. Matralis, Ch. Papadopoulou, A. Lycourghiotis, Appl. Catal. A, 1994, 116, 221.

    30. [30]

      [30] T. F. Hayden, J. A. Dumesic, J. Catal., 1987, 103, 366.

    31. [31]

      [31] A. J. Duan, T. S. Li, Z. Zhao, B. J. Liu, X. F. Zhou, G. Y. Jiang, J. Liu, Y. C. Wei, H. F. Pan, Appl. Catal. B, 2015, 165, 763.

    32. [32]

      [32] X. Rozanska, X. Saintigny, R. A. van Santen, S. Clémendot, F. Hutschka, J. Catal., 2002, 208, 89.

    33. [33]

      [33] L. Wang, B. J. Shen, F. Fang, F. C. Wang, R. Tian, Z. H. Zhang, L. S. Cui, Catal. Today, 2010, 158, 343.

    34. [34]

      [34] Y. D. Wang, B. J. Shen, J. C. Li, B. Feng, X. H. Li, S. Y. Ren, Q. X. Guo, Fuel Process Technol., 2014, 128, 166.

  • 加载中
    1. [1]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    6. [6]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    7. [7]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(0)
  • Abstract views(367)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return