Citation: Bingyang Bai, Qi Qiao, Junhua Li, Jiming Hao. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chinese Journal of Catalysis, ;2016, 37(1): 102-122. doi: 10.1016/S1872-2067(15)61007-5 shu

Progress in research on catalysts for catalytic oxidation of formaldehyde

  • Corresponding author: Bingyang Bai,  Junhua Li, 
  • Received Date: 27 August 2015
    Available Online: 20 October 2015

    Fund Project: 国家自然科学基金(21325731, 51478241, 21221004). (21325731, 51478241, 21221004)

  • Formaldehyde (HCHO) is carcinogenic and teratogenic, and is therefore a serious danger to human health. It also adversely affects air quality. Catalytic oxidation is an efficient technique for removing HCHO. The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures, even room temperature, is important. Supported Pt and Pd catalysts can completely convert HCHO at room temperature, but their industrial applications are limited because they are expensive. The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2, Co3O4, or other metal oxides. This is attributed to their specific structures, high specific surface areas, and other factors such as active phase, reducibility, and amount of surface active oxygens. Such catalysts with various morphologies have great potential and can also be used as catalyst supports. The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature. The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal. In this paper, research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties, structure-activity relationships, and factors influencing the catalytic activity and reaction mechanism are discussed. Future prospects and directions for the development of such catalysts are also covered.
  • 加载中
    1. [1]

      [1] T. Salthammer, S. Mentese, R. Marutzky, Chem. Rev., 2010, 110, 2536.

    2. [2]

      [2] M. Hakim, Y. Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, H. Haick, Chem. Rev., 2012, 112, 5949.

    3. [3]

      [3] O. S. Wenger, Chem. Rev., 2013, 113, 3686.

    4. [4]

      [4] R. J. Avery, Environ. Sci. Technol., 2006, 40, 4845.

    5. [5]

      [5] S. P. Chen, T. H. Liu, T. F. Chen, C. F. Ouyang, J. L. Wang, J. S. Chang, Environ. Sci. Technol., 2010, 44, 4635.

    6. [6]

      [6] C. Domeño, Á. Rodríguez-Lafuente, J. Martos, R. Bilbao, C. Nerín, Environ. Sci. Technol., 2010, 44, 2585.

    7. [7]

      [7] D. J. Luecken, M. R. Mebust, Environ. Sci. Technol., 2008, 42, 1615.

    8. [8]

      [8] B. Cardoso, A. S. Mestre, A. P. Carvalho, J. Pires, Ind. Eng. Chem. Res., 2008, 47, 5841.

    9. [9]

      [9] Y. C. Chiang, P. C. Chiang, C. P. Huang, Carbon, 2001, 39, 523.

    10. [10]

      [10] S. Brosillon, M. H. Manero, J. N. Foussard, Environ. Sci. Technol., 2001, 35, 3571.

    11. [11]

      [11] I. Ushiki, M. Ota, Y. Sato, H. Inomata, Fluid Phase Equilibr., 2015, 403, 78.

    12. [12]

      [12] N. Yao, K. L. Yeung, Chem. Eng. J., 2011, 167, 13.

    13. [13]

      [13] R. Tejasvi, M. Sharma, K. Upadhyay, Chem. Eng. J., 2015, 262, 875.

    14. [14]

      [14] M. Hussain, N. Russo, G. Saracco, Chem. Eng. J., 2011, 166, 138.

    15. [15]

      [15] F. Moulis, J. Krýsa, Catal. Today, 2013, 209, 153.

    16. [16]

      [16] F. Wang, H. X. Dai, J. G. Deng, G. M. Bai, K. M Ji, Y. X. Liu, Environ. Sci. Technol., 2012, 46, 4034.

    17. [17]

      [17] J. G. Deng, L. Zhang, H. X. Dai, Y. S. Xia, H. Y. Jiang, H. Zhang, H. He, J. Phys. Chem. C, 2010, 114, 2694.

    18. [18]

      [18] Q. Ye, J. S. Zhao, F. F. Huo, D. Wang, .S Y. Cheng, T. F. Kang, H. X. Dai, Microporous Mesoporous Mater., 2013, 172, 20.

    19. [19]

      [19] H. Arandiyan, H. X. Dai, J. G. Deng, Y. Wang, H. Y. Sun, S. H. Xie, B. Y. Bai, Y. X. Liu, K. M. Ji, J. H. Li, J. Phys. Chem. C, 2014, 118, 14913.

    20. [20]

      [20] H. Arandiyan, H. X. Dai, K. M. Ji, H. Y. Sun, J. H. Li, ACS Catal., 2015, 5, 1781.

    21. [21]

      [21] B. Y. Bai, J. H. Li, J. M. Hao, Appl. Catal. B, 2015, 164, 241.

    22. [22]

      [22] Y. Le, D. P. Guo, B. Cheng, J. G. Yu, Appl. Surf. Sci., 2013, 274, 110.

    23. [23]

      [23] Q. B. Wen, C. Q. Li, Z. H. Cai, W. Zhang, H. L. Gao, L. J. Chen, G. M. Zeng, X. Shu, Y. P. Zhao, Bioresource Technol., 2011, 102, 942.

    24. [24]

      [24] C. J. Ma, X. H. Li, T. L. Zhu, Carbon, 2011, 49, 2873.

    25. [25]

      [25] L. D. Zou, Y. G. Luo, M. Hooper, E. Hu, Chem. Eng. Process, 2006, 45, 959.

    26. [26]

      [26] J. Li, Z. Li, B. Liu, Q. B. Xia, H. X. Xi, Chin. J. Chem. Eng., 2008, 16, 871.

    27. [27]

      [27] D. Chen, Z. P. Qu, Y. H. Sun, Y. Wang, Colloid Surf. A, 2014, 441, 433.

    28. [28]

      [28] A. Rezaee, H. Rangkooy, A. Jonidi-Jafari, A. Khavanin, Appl. Surf. Sci, 2013, 286, 235.

    29. [29]

      [29] H. Q. Rong, Z. Y. Ryu, J. T. Zheng, Y. L. Zhang, Carbon, 2002, 40, 2291.

    30. [30]

      [30] K. J. Lee, N. Shiratori, G. H. Lee, J. Miyawaki, I. Mochida, S. H. Yoon, J. Jang, Carbon, 2010, 48, 4248.

    31. [31]

      [31] D. Chen, Z. P. Qu, W. W. Zhang, X. Y. Li, Q D Zhao, Y. Shi, Colloid Surf A, 2011, 379, 136.

    32. [32]

      [32] K. Kosuge, S. Kubo, N. Kikukawa, M. Takemori, Langmuir, 2007, 23, 3095.

    33. [33]

      [33] Y. W. Lu, D. H. Wang, C. F. Ma, H. C. Yang, Build. Environ., 2010, 45, 615.

    34. [34]

      [34] R. Akbarzadeh, S. B. Umbarkar, R. S. Sonawane, S. Takle, M. K. Dongare, Appl. Catal. A, 2010, 374, 103.

    35. [35]

      [35] P. A. Bourgeois, E. Puzenat, L. Peruchon, F. Simonet, D. Chevalier, E. Deflin, C. Brochier, C. Guillard, Appl. Catal. B, 2012, 128, 171.

    36. [36]

      [36] P. F. Fu, P. Y. Zhang, J. Li, Appl. Catal. B, 2011, 105, 220.

    37. [37]

      [37] G. K. Zhang, Q. Xiong, W. Xu, S. Guo, Appl. Clay. Sci., 2014, 102, 231.

    38. [38]

      [38] Y. You, S. Y. Zhang, L. Wan, D. F. Xu, Appl. Surf. Sci., 2012, 258, 3469.

    39. [39]

      [39] X. B. Zhu, D. L. Chang, X. S. Li, Z. G. Sun, X. Q. Deng, A. M. Zhu, Chem. Eng. J., 2015, 279, 897.

    40. [40]

      [40] W. Low, V. Boonamnuayvitaya, J. Environ. Manage., 2013, 127, 142.

    41. [41]

      [41] M. Khanmohammadi, A. B. Garmarudi, H. Elmizadeh, M. B. Roochi, J. Ind. Eng. Chem., 2014, 20, 1841.

    42. [42]

      [42] B. Y. Bai, H. Arandiyan, J. H. Li, Appl. Catal. B, 2013, 142-143, 677.

    43. [43]

      [43] J. Quiroz Torres, S. Royer, J. P. Bellat, J. M. Giraudon, J. F. Lamonier, ChemSusChem, 2013, 6, 578.

    44. [44]

      [44] C. B. Zhang, H. He, K. I. Tanaka, Appl. Cataly. B, 2006, 65, 37.

    45. [45]

      [45] C. B. Zhang, H. He, Catal. Today, 2007, 126, 345.

    46. [46]

      [46] C. B. Zhang, F. D. Liu, Y. P. Zhai, H. Ariga, N. Yi, Y. C. Liu, K. Asakura, M. Flytzani-Stephanopoulos, H. He, Angew. Chem. Int. Ed., 2012, 51, 9628.

    47. [47]

      [47] L. H. Nie, J. G. Yu, X. Y. Li, B. Cheng, G. Liu, M. Jaroniec, Environ. Sci. Technol., 2013, 47, 2777.

    48. [48]

      [48] S. S. Kim, K. H. Park, S. C. Hong, Appl. Catal. A, 2011, 398, 96.

    49. [49]

      [49] N. H. An, W. L. Zhang, X. L. Yuan, B. Pan, G. Liu, M. J. Jia, W. F. Yan, W. X. Zhang, Chem. Eng. J., 2013, 215-216, 1.

    50. [50]

      [50] J. X. Peng, S. D. Wang, Appl. Catal. B, 2007, 73, 282.

    51. [51]

      [51] K. T. Chuang, B. Zhou, S. M. Tong, Ind. Eng. Chem. Res., 1994, 33, 1680.

    52. [52]

      [52] H. B. Huang, D. Y. C. Leung, J. Catal., 2011, 280, 60.

    53. [53]

      [53] H. B. Huang, D. Y. C. Leung, ACS Catal., 2011, 1, 348.

    54. [54]

      [54] S. J. Park, I. Bae, I. S. Nam, B. K. Cho, S. M. Jung, J. H. Lee, Chem. Eng. J., 2012, 195-196, 392.

    55. [55]

      [55] V. A. dela O'Shea, M. CÁlvarez-Galván, J. L. G. Fierro, P. L. Arias, Appl. Catal. B, 2005, 57, 191.

    56. [56]

      [56] Z. P. Qu, S. J. Shen, D. Chen, Y. Wang, J. Mol. Catal. A, 2012, 356, 171.

    57. [57]

      [57] C. F. Mao, M. A. Vannice, J. Catal., 1995, 154, 230.

    58. [58]

      [58] S. Imamura, D. Uchihori, K. Utani, T. Ito, Catal. Lett., 1994, 24, 377.

    59. [59]

      [59] K. Sekizawa, H. Widjaja, S. Maeda, Y. Ozawa, K. Eguchi, Appl. Catal. A, 2000, 200, 211.

    60. [60]

      [60] S. Minicò, S. Scirè, C. Crisafulli, R. Maggiore, S. Galvagno, Appl. Catal. B, 2000, 28, 245.

    61. [61]

      [61] S. Imamura, Y. Uematsu, K. Utani, T. Ito, Ind. Eng. Chem. Res., 1991, 30, 18.

    62. [62]

      [62] X. F. Tang, J. L. Chen, X. M. Huang, Y. D. Xu, W. J. Shen, Appl. Catal. B, 2008, 81, 115.

    63. [63]

      [63] X. F. Tang, J. L. Chen, Y. G. Li, Y. Li, Y. D. Xu, W. J. Shen, Chem. Eng. J., 2006, 118, 119.

    64. [64]

      [64] Y. N. Shen, X. Z. Yang, Y. Z. Wang, Y. B. Zhang, H. Y. Zhu, L .Gao, M. L. Jia, Appl. Catal. B, 2008, 79, 142.

    65. [65]

      [65] H. F. Li, N. Zhang, P. Chen, M. F. Luo, J. Q. Lu, Appl. Catal. B, 2011, 110, 279.

    66. [66]

      [66] C. Y. Li, Y. N. Shen, M. L. Jia, S. S. Sheng, M. O. Adebajo, H. Y. Zhu, Catal. Commun., 2008, 9, 355.

    67. [67]

      [67] N. H. An, Q. S. Yu, G. Liu, S. P. Li, M. J. Jia, W. X. Zhang, J. Hazard. Mater., 2011, 186, 1392.

    68. [68]

      [68] H. Tian, J. H. He, L. L. Liu, D. H. Wang, Ceram. Int., 2013, 39, 315.

    69. [69]

      [69] X. H. Yu, J. H. He, D. H. Wang, Y. C. Hu, H. Tian, Z. C. He, J. Phys. Chem. C, 2011, 116, 851.

    70. [70]

      [70] Z. W. Huang, G. Xu, Q. Q. Cao, P. P. Hu, J. M. Hao, J. H. Li, X. F.Tang, Angew. Chem. Int. Ed., 2012, 51, 4198.

    71. [71]

      [71] P. P. Hu, Z. Amghouz, Z. W. Huang, F. Xu, Y. X. Chen, X. F. Tang, Environ. Sci. Technol., 2015, 49, 2384.

    72. [72]

      [72] J. Zhang, Y. Jin, C. Y. Li, Y. N. Shen, L. Han, Z. X. Hu, X. W. Di, Z. L. Liu, Appl. Catal. B, 2009, 91, 11.

    73. [73]

      [73] B. C. Liu, C. Y. Li, Y. F. Zhang, Y. Liu, W. T. Hu, Q. Wang, L. Han, J. Zhang, Appl. Catal. B, 2012, 111, 467.

    74. [74]

      [74] B. C. Liu, Y. Liu, C. Y. Li, W. T. Hu, P. Jing, Q. Wang, J. Zhang, Appl. Catal. B, 2012, 127, 47.

    75. [75]

      [75] C. Y. Ma, D. H. Wang, W. J. Xue, B. J. Dou, H. L. Wang, Z. P. Hao, Environ. Sci. Technol., 2011, 45, 3628.

    76. [76]

      [76] C. Y. Ma, Z. Mu, J. J. Li, Y. G. Jin, J. Cheng, G. Q. Lu, Z. P. Hao, S. Z. Qiao, J. Am. Chem. Soc., 2010, 132, 2608.

    77. [77]

      [77] Y. B. Zhang, Y. N. Shen, X. G. Yang, S. S. Sheng, T. Wang, M. F. Adebajo, H. Y. Zhu, J. Mol. Catal. A, 2010, 316, 100.

    78. [78]

      [78] B. Y. Bai, J. H. Li, ACS Catal., 2014, 4, 2753.

    79. [79]

      [79] L. Ma, D. S. Wang, J. H. Li, B. Y. Bai, L. X. Fu, Y. D. Li, Appl. Catal. B, 2014, 148-149, 36.

    80. [80]

      [80] R. H. Wang, J. H. Li, Catal. Lett., 2009, 131, 500.

    81. [81]

      [81] Y. Sekine, A. Nishimura, Atmos. Environ., 2001, 35, 2001.

    82. [82]

      [82] Y. Sekine, Atmos. Environ., 2002, 36, 5543.

    83. [83]

      [83] L. Zhou, J. Zhang, J. H. He, Y. C. Hu, H. Tian, Mater. Res. Bull., 2011, 46, 1714.

    84. [84]

      [84] T. Chen, H. Y. Dou, X. L. Li, X. F. Tang, J. H. Li, J. M. Hao, Microporous Mesoporous Mater., 2009, 122, 270.

    85. [85]

      [85] Y. Xu, J. Greeley, M. Mavrikakis, J. Am. Chem. Soc., 2005, 127, 12823.

    86. [86]

      [86] X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Nature, 2009, 458, 746.

    87. [87]

      [87] D. Widmann, R. J. Behm, Angew. Chem. Int. Ed., 2011, 50, 10241.

    88. [88]

      [88] H. M. Chen, J. H. He, C. B. Zhang, H. He. J. Phys. Chem. C, 2007, 111, 18033.

    89. [89]

      [89] X. F. Tang, X. M. Huang, J. J. Shao, J. L. Liu, Y. G. Li, Y. D. Xu, W. J. Shen, Chin. J. Catal., 2006, 27, 97.

    90. [90]

      [90] H. Tian, J. H. He, X. D. Zhang, L. Zhou, D. H. Wang, Microporous Mesoporous Mater., 2011, 138, 118.

    91. [91]

      [91] H. Tian, J. H. He, L. L. Liu, D. H. Wang, Z. P. Hao, C. Y. Ma, Microporous Mesoporous Mater., 2012, 151, 397.

    92. [92]

      [92] Y. S. Xia, H. X. Dai, L. Zhang, J. G. Deng, H. He, C. T. Au, Appl. Catal. B, 2010, 100, 229.

    93. [93]

      [93] B. Y. Bai, J. H. Li, J. M. Hao, Appl. Catal. B, 2015, 164, 241.

    94. [94]

      [94] B. Y. Bai, Q. Qiao, J. H. Li, J. M. Hao, Chin. J. Catal., 2015, 36, 27.

    95. [95]

      [95] X. F. Tang, Y. G. Li, X. M. Huang, Y. D. Xu, H. Q. Zhu, J. G. Wang, W. J. Shen. Appl. Catal. B, 2006, 62, 265.

    96. [96]

      [96] X. S. Liu, J. Q. Lu, K. Qian, W. X. Huang, M. F. Luo. J. Rare. Earth, 2009, 27, 418.

    97. [97]

      [97] Y. R. Wen, X. Tang, J. H. Li, J. M. Hao, L. S. Wei, X. F. Tang. Catal. Commun., 2009, 10, 1157.

    98. [98]

      [98] J. J. Pei, X. Han, Y. Lu, Build. Environ., 2015, 84, 134.

    99. [99]

      [99] L. Bai, F. Wyrwalski, J. F. Lamonier, A. Y. Khodakov, E. Monflier, A. Ponchel, Appl. Catal. B, 2013, 138-139, 381.

    100. [100]

      [100] Y. Wang, A. M. Zhu, B. B. Chen, M. Crocker, C. Shi, Catal. Commun., 2013, 36, 52.

    101. [101]

      [101] H. Arandiyan, H. X. Dai, J. G. Deng, Y. Wang, H. Y. Sun, S. H. Xie, B. Y. Bai, Y. X. Liu, K. M. Ji, J. H. Li, J. Phys. Chem. C, 2014, 118, 14913.

    102. [102]

      [102] H. Arandiyan, H. X. Dai, K. M. Ji, H. Y. Sun, J. H. Li, ACS Catal., 2015, 5, 1781.

    103. [103]

      [103] H. Over, A. P. Seitsonen, Science, 2002, 297, 2003.

    104. [104]

      [104] K. An, S. Alayoglu, N. Musselwhite, S. Plamthottam, G. Melaet, A. E. Lindeman, G. A. Somorjai, J. Am. Chem. Soc., 2013, 135, 16689.

    105. [105]

      [105] J. H. Li, R. H .Wang, J. M. Hao, J. Phys. Chem. C, 2010, 114, 10544.

    106. [106]

      [106] Y. X. Liu, H. X. Dai, J. G. Deng, S. H. Xie, H. G. Yang, W. Tan, W. Han, Y. Jiang, G. S. Guo, J. Catal., 2014, 309, 408.

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    13. [13]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(1)
  • Abstract views(1258)
  • HTML views(333)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return