Citation: Asha V. Chate, Umesh B. Rathod, Jagdish S. Kshirsagar, Pradip A. Gaikwad, Kishor D. Mane, Pravin S. Mahajan, Mukesh D. Nikam, Charansingh H. Gill. Ultrasound assisted multicomponent reactions: A green method for the synthesis of N-substituted 1,8-dioxo-decahydroacridines using β-cyclodextrin as a supramolecular reusable catalyst in water[J]. Chinese Journal of Catalysis, ;2016, 37(1): 146-152. doi: 10.1016/S1872-2067(15)61005-1 shu

Ultrasound assisted multicomponent reactions: A green method for the synthesis of N-substituted 1,8-dioxo-decahydroacridines using β-cyclodextrin as a supramolecular reusable catalyst in water

  • Corresponding author: Charansingh H. Gill, 
  • Received Date: 19 September 2015
    Available Online: 25 October 2015

  • We demonstrate a superficial method for the synthesis of N-substituted 1,8-dioxo-decahydroacridines using β-cyclodextrin as a supramolecular, biodegradable, and reusable catalyst in aqueous medium. The reaction product is in excellent yield with moderate to excellent selectivity. The mechanistic transformation presumably proceeds via a one-pot, multicomponent cyclization of dimedone in the presence of aromatic aldehydes and aromatic amines/INH, undergoing a tandem Michael addition reaction. The proposed approach in this study provides a highly efficient and environmentally benign route to N-substituted 1,8-dioxo-decahydroacridines.
  • 加载中
    1. [1]

      [1] J. Szejtli, Chem. Rev., 1998, 98, 1743.

    2. [2]

      [2] H. Dodziuk, Cyclodextrins and Their Complexes, Chemistry, Analytical Methods, Applications, Wiley-VCH, Weinheim, 2006.

    3. [3]

      [3] E. M. M. Del Valle, Process Biochem., 2004, 39, 1033.

    4. [4]

      [4] M. E. Davis, M. E. Brewster, Nat. Rev. Drug Disc., 2004, 3, 1023.

    5. [5]

      [5] A. L. Laza-Knoerr, R. Gref, P. Couvreur, J. Drug Target., 2010, 18, 645.

    6. [6]

      [6] H. B. Ji, D. P. Shi, M. Shao, Z. Li, L. F. Wang, Tetrahedron Lett., 2005, 46, 2517.

    7. [7]

      [7] A. Dömling, I. Ugi, Angew. Chem. Int. Ed., 2000, 39, 3168.

    8. [8]

      [8] A. Dömling, Chem. Rev., 2006, 106, 17.

    9. [9]

      [9] J. P. Zhu, H. Bienaymé, Multicomponent Reactions, Wiley-VCH, Weinheim, 2005.

    10. [10]

      [10] R. W. Armstrong, A. P. Combs, P. A. Tempest, S. D. Brown, T. A. Keating, Acc. Chem. Res., 1996, 19, 123.

    11. [11]

      [11] S. Girault, P. Grellier, A. Berecibar, L. Maes, E. Mouray, P. Lemiere, M. A. Debreu, E. Davioud-Charvet, C. Sergheraet, J. Med. Chem., 2000, 43, 2646.

    12. [12]

      [12] Y. Mikata, M. Yokoyama, K. Mogami, M. Kato, I. Okura, M. Chikira, S. Yano, Inorg. Chim. Acta, 1998, 279, 51.

    13. [13]

      [13] S. A. Gamega, J. A. Spicer, G. J. Atwell, G. J. Finlay, B. C. Baguley, W. A. Deny, J. Med. Chem., 1999, 42, 2383.

    14. [14]

      [14] M. Wainwright, J. Antimicrob. Chemother., 2001, 47, 1.

    15. [15]

      [15] I. Antonini, P. Polucci, L. R. Kelland, E. Menta, N. Pescalli, S. Martelli, J. Med. Chem., 1999, 42, 2535.

    16. [16]

      [16] S. Gallo, S. Atifi, A. Mohamoud, C. Santelli-Rouvier, K. Wolfart, J. Molnar, J. Barbe, Eur. J. Med. Chem., 2003, 38, 19.

    17. [17]

      [17] L. Ngadi, A. M. Galy, J. P. Galy, J. Barbe, A. Cremieux, J. Chevalier, D. Sharples, Eur. J. Med. Chem., 1990, 25, 67.

    18. [18]

      [18] F. Bossert, W. Vater, Med. Res. Rev., 1989, 9, 291.

    19. [19]

      [19] O. Berkan, B. Sarac, R. Simsek, S. Yildirim, Y. Sariogli, C. Safak, Eur. J. Med. Chem., 2002, 37, 519.

    20. [20]

      [20] P. Murugan, P. Shanmugasundaram, V. T. Ramakrishnan, B. Venkatachalapathy, N. Srividya, P. Ramamurthy, K. Gunasekaran, D. Velmurugan, J. Chem. Soc., Perkin Trans. 2, 1998, 999.

    21. [21]

      [21] A. Islam, P. Murugan, K. C. Hwang, C. H. Cheng, Synth. Metal, 2003, 139, 347.

    22. [22]

      [22] S. J. Tu, C. B. Miao, Y. Gao, F. Fang, Q. Y. Zhuang, Y. J. Feng, D. Q. Shi, Synlett, 2004, 255.

    23. [23]

      [23] A. A. Bakibaev, V. D. Fillimonov, E. S. Nevgodova, Zh. Org. Khim., 1991, 27, 1519.

    24. [24]

      [24] S. J. Tu, F. Fang, S. L. Zhu, T. J. Li, X. J. Zhang, Q. Y. Zhuang, J. Heterocycl. Chem., 2004, 41, 767.

    25. [25]

      [25] M. Suarez, A. Loupy, E. Salfran, L. Moran, E. Rolando, Heterocycles, 1999, 51, 21.

    26. [26]

      [26] S. J. Tu, Z. S. Lu, D. Q. Shi, C. S. Yao, Y. Gao, C. Guo, Synth. Commun., 2002, 32, 2181.

    27. [27]

      [27] N. Martin, M. Quinteiro, C. Seoane, J. L. Soto, A. Mora, M. Suarez, E. Ochoa, A. Morales, J. R. del Bosque, J. Heterocycl. Chem., 1995, 32, 235.

    28. [28]

      [28] B. Das, P. Thirupathi, I. Mahender, V. S. Reddy, Y. K. Rao, J. Mol. Catal. A, 2006, 247, 233.

    29. [29]

      [29] X. S. Wang, D. Q. Shi, D. Q. Zhang, Y. F. Wang, S. J. Tu, Chin. J. Org. Chem., 2004, 24, 430.

    30. [30]

      [30] S. J. Tu, C. B. Miao, Y. A. Gao, Y. J. Feng, J. C. Feng, Chin. J. Org. Chem., 2002, 20, 703.

    31. [31]

      [31] X. S. Wang, D. Q. Shi, S. H. Wang, S. J. Tu, Chin. J. Org. Chem., 2003, 23, 1291.

    32. [32]

      [32] Y. L. Li, M. M. Zhang, X. S. Wang, D. Q. Shi, S. J. Tu, X. Y. Wei, Z. M. Zong, J. Chem. Res., 2005, 600.

    33. [33]

      [33] X. S. Wang, M. M. Zhang, H. Jiang, D. Q. Shi, S. J. Tu, X. Y. Wei, Z. M. Zong, Synthesis, 2006, 4187.

    34. [34]

      [34] T. S. Jin, J. S. Zhang, T. T. Guo, A. Q. Wang, T. S. Li, Synthesis, 2004, 2001.

    35. [35]

      [35] S. Balalaie, F. Chadegan, F. Darviche, H. R. Bijanzadeh, Chin. J. Chem., 2009, 27, 1953.

    36. [36]

      [36] K. Venkatesan, S. S. Pujari, K. V. Srinivasan, Synth. Commun., 2009, 39, 228.

    37. [37]

      [37] M. Kidwai, D. Bhatnagar, Tetrahedron Lett., 2010, 51, 2700.

    38. [38]

      [38] M. V. Seyed, K. Samad, A. B. Maryam Saeed, Arab. J. Chem., 2014, doi,101016/jarabjc201410026.

    39. [39]

      [39] G. Zbancioc, O. Florea, P. G. Jones, I. I. Mangalagiu, Ultrason. Sonochem., 2012, 19, 399.

    40. [40]

      [40] J. P. Hallett, T. Welton, Chem. Rev., 2011, 111, 3508.

    41. [41]

      [41] P. A. Grieco, Organic Synthesis in Water. Blackie, Springer, 1998.

    42. [42]

      [42] R. Breslow, Acc. Chem. Res., 2004, 37, 471.

    43. [43]

      [43] N. Azizi, F. Aryanasab, L. Torkiyan, A. Ziyaei, M. R. Saidi, J. Org. Chem., 2006, 71, 3634.

    44. [44]

      [44] S. Tiwari, A. Kumar, Angew. Chem. Int. Ed., 2006, 45, 4824.

    45. [45]

      [45] Y. Jung, R. A. Marcus, J. Am. Chem. Soc., 2007, 129, 5492.

    46. [46]

      [46] K. A. Connors, Chem. Rev., 1997, 97, 1325.

    47. [47]

      [47] M. V. Rekharsky, Y. Inoue, Chem. Rev., 1998, 98, 1875.

    48. [48]

      [48] J. L. Song, Z. F. Zhang, B. X. Han, S. Q. Hu, W. J. Li, Y. Xie, Green Chem., 2008, 10, 1337.

    49. [49]

      [49] K. Takahashi, Chem. Rev., 1998, 98, 2013.

    50. [50]

      [50] S. S. Hu, J. Y. Li, J. F. Xiang, J. Pan, S. Z. Luo, J. P. Cheng, J. Am. Chem. Soc., 2010, 132, 7216.

    51. [51]

      [51] C. F. Ke, C. Yang, T. Mori, T. Wada, Y. Liu, Y. Inoue, Angew. Chem. Int. Ed., 2009, 48, 6675.

    52. [52]

      [52] K. Kanagaraj, K. Pitchumani, J. Org. Chem., 2013, 78, 744.

    53. [53]

      [53] S. N. Murthy, B. Madhav, V. P. Reddy, Y. V. D. Nageswar, Tetrahedron Lett., 2010, 51, 3649.

    54. [54]

      [54] G. Cafeo, F. H. Kohnke, L. Valenti, Tetrahedron Lett., 2009, 50, 4138.

    55. [55]

      [55] W. K. Chan, W. Y. Yu, C. M. Che, M. K. Wong, J. Org. Chem., 2003, 68, 6576.

    56. [56]

      [56] C. Rousseau, B. Christensen, T. E. Petersenb, M. Bols, Org. Biomol. Chem., 2004, 2, 3476.

    57. [57]

      [57] C. Rousseau, B. Christensen, M. Bols, Eur. J. Org. Chem., 2005, 2734.

    58. [58]

      [58] T. H. Manjashetty, P. Yogeeswari, D. Sriram, Bioorg. Med. Chem. Lett., 2011, 21, 2125.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    10. [10]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(0)
  • Abstract views(417)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return