Citation: Qi Fan, Shuai Zhang, Liying Sun, Xue Dong, Lancui Zhang, Wenjuan Shan, Zaiming Zhu. Catalytic oxidation of diesel soot particulates over Ag/LaCoO3 perovskite oxides in air and NOx[J]. Chinese Journal of Catalysis, ;2016, 37(3): 428-435. doi: 10.1016/S1872-2067(15)61000-2 shu

Catalytic oxidation of diesel soot particulates over Ag/LaCoO3 perovskite oxides in air and NOx

  • Corresponding author: Wenjuan Shan,  Zaiming Zhu, 
  • Received Date: 10 October 2015
    Available Online: 29 October 2015

  • Ag/LaCoO3 perovskite catalysts for soot combustion were prepared by the impregnation method. The structure and physicochemical properties of the catalysts were characterized using X-ray diffraction, N2 adsorption-desorption, H2 temperature-programmed reduction, soot temperature-programmed reduction, and X-ray photoelectron spectroscopy. The catalytic activity of the catalysts for soot oxidation was tested by temperature-programmed oxidation in air and in a NOx atmosphere. Metallic Ag particles were the main Ag species. Part of the Ag migrated from the surface to the lattice of the LaCoO3 perovskite, to form La1-xAgxCoO3. This increased the amount of oxygen vacancies in the perovskite structure during thermal treatment. Compared with unmodified LaCoO3, the maximum soot oxidation rate temperature (Tp) decreased by 50-70 ℃ in air when LaCoO3 was partially modified by Ag, depending on the thermal treatment temperature. The Tp of the Ag/LaCoO3 catalyst calcined at 400 ℃ in a NOx atmosphere decreased to about 140 ℃, compared with that of LaCoO3. Ag particles and oxygen vacancies in the catalysts contributed to their high catalytic activity for soot oxidation. The stable catalytic activity of the Ag/LaCoO3 catalyst calcined at 700 ℃ in a NOx atmosphere was related to its stable structure.
  • 加载中
    1. [1]

      [1] J. P. A. Neeft, M. Makkee, J. A. Moulijn, Fuel Sci. Technol., 1996, 47, 1-69.

    2. [2]

      [2] S. Q. Fang, L. Wang, Z. C. Sun, N. J. Feng, C. Shen, P. Lin, H. Wan, G. F. Guan, Catal. Commun., 2014, 49, 15-19.

    3. [3]

      [3] P. Doggali, S. Kusaba, Y. Teraoka, P. Chankapure, S. Rayalu, N. Labhsetwar, Catal. Commun., 2010, 11, 665-669.

    4. [4]

      [4] Z. Q. Li, M. Meng, Q. Li, Y. N. Xie, T. D. Hu, J. Zhang, Chem. Eng. J., 2010, 164, 98-105.

    5. [5]

      [5] K. Yamazaki, T. Kayama, F. Dong, H. Shinjoh, J. Catal., 2011, 282, 289-298.

    6. [6]

      [6] M. Haneda, A. Towata, Catal. Today, 2015, 242, 351-356.

    7. [7]

      [7] Y. X. Liu, H. X. Dai, Y. C. Du, J. G. Deng, L. Zhang, Z. X. Zhao, C. T. Au, J. Catal., 2012, 287, 149-160.

    8. [8]

      [8] C. Lee, J. I. Park, Y. G. Shul, H. Einaga, Y. Teraoka, Appl. Catal. B, 2015, 174-175, 185-192.

    9. [9]

      [9] G. Y. Yang, Y. J. Li, Y. Men, Catal. Commun., 2015, 69, 202-206.

    10. [10]

      [10] Y. J. Wang, J. H. Wang, H. Chen, M. F. Yao, Y. D. Li, Chem. Eng. Sci., 2015, 135, 294-300.

    11. [11]

      [11] S. J. Castillo Marcano, S. Bensaid, F. A. Deorsola, N. Russo, D. Fino, Fuel, 2015, 149, 78-84.

    12. [12]

      [12] Q. Q. Yang, F. N. Gu, Y. F. Tang, H. Zhang, Q. Liu, Z. Y. Zhong, F. B. Su, RSC Adv., 2015, 5, 26815-26822.

    13. [13]

      [13] W. J. Shan, L. H. Yang, N. Ma, J. L. Yang, Chin. J. Catal., 2012, 33, 970-976.

    14. [14]

      [14] W. J. Shan, J. L. Yang, L. H. Yang, N. Ma, J. Nat. Gas Chem., 2011, 20, 384-388.

    15. [15]

      [15] H. L. Zhang, J. L. Wang, Y. Cao, Y. J. Wang, M. C. Gong, Y. Q. Chen, Chin. J. Catal., 2015, 36, 1333-1341.

    16. [16]

      [16] X. Guo, M. Meng, F. F. Dai, Q. Li, Z. L. Zhang, Z. Jiang, S. Zhang, Y. Y. Huang, Appl. Catal. B, 2013, 142-143, 278-289.

    17. [17]

      [17] H. Shimokawa, Y. Kurihara, H. Kusaga, H. Einaga, Y. Teraoka, Catal. Today, 2012, 185, 99-103.

    18. [18]

      [18] K. Wang, L. Qian, L. Zhang, H. R. Liu, Z. F. Yan, Catal. Today, 2010, 158, 423-426.

    19. [19]

      [19] E. Aneggi, J. Llorca, C. de Leitenburg, G. Dolcetti, A. Trovarelli, Appl. Catal. B, 2009, 91, 489-498.

    20. [20]

      [20] E. Aneggi, M. Boaro, C. de Leitenburg, G. Dolcetti, A. Trovarelli, J. Alloys Compd., 2006, 408-412, 1096-1102.

    21. [21]

      [21] W. J. Shan, N. Ma, J. L. Yang, X. W. Dong, C. Liu, L. L. Wei, J. Nat. Gas Chem., 2010, 19, 86-90.

    22. [22]

      [22] S. Imamura, H. Yamada, K. Utani, Appl. Catal. A, 2000, 192, 221-226.

    23. [23]

      [23] Y. Kang, M. Sun, A. M. Li, Catal. Lett., 2012, 142, 1498-1504.

    24. [24]

      [24] L. L. Murrell, R. T. Carlin, J. Catal., 1996, 159, 479-490.

    25. [25]

      [25] M. Kumar, G. B. Reddy, Phys. Status Solidi B, 2009, 246, 2232-2237.

    26. [26]

      [26] Z. Q. Li, M. Meng, Y. Q. Zha, F. F. Dai, T. D. Hu, Y. N. Xie, J. Zhang, Appl. Catal. B, 2012, 121-122, 65-74.

    27. [27]

      [27] C. Badini, V. Serra, G. Saracco, M. Montorsi, Catal. Lett., 1996, 37, 247-254.

    28. [28]

      [28] G. C. Zou, M. X. Chen, W. F. Shangguan, Catal. Commun., 2014, 51, 68-71.

    29. [29]

      [29] J. Liu, Z. Zhao, C. M. Xu, A. J. Duan, Appl. Catal. B, 2008, 78, 61-72.

    30. [30]

      [30] J. Liu, Z. Zhao, C. M. Xu, A. J. Duan, G. Y. Jiang, J. Phys. Chem. C, 2008, 112, 5930-5941.

    31. [31]

      [31] A. Nagy, G. Mestl, Appl. Catal. A, 1999, 188, 337-353.

    32. [32]

      [32] M. Machida, Y. Murata, K. Kishikawa, D. J. Zhang, K. Ikeue, Chem. Mater., 2008, 20, 4489-4494.

    33. [33]

      [33] K. Shimizu, H. Kawachi, A. Satsuma, Appl. Catal. B, 2010, 96, 169-175.

    34. [34]

      [34] T. Nanba, S. Masukawa, A. Abe, J. Uchisawa, A. Obuchi, Catal. Sci. Technol., 2012, 2, 1961-1966.

    35. [35]

      [35] B. Dernaika, D. Uner, Appl. Catal. B, 2003, 40, 219-229.

    36. [36]

      [36] N. Russo, D. Fino, G. Saracco, V. Specchia, J. Catal., 2005, 229, 459-469.

    37. [37]

      [37] J. Oi-Uchisawa, A. Obuchi, R. Enomoto, J. Y. Xu, T. Nanba, S. T. Liu, S. Kushiyama, Appl. Catal. B, 2001, 32, 257-268.

    38. [38]

      [38] S. T. Liu, A. Obuchi, J. Uchisawa, T. Nanba, S. Kushiyama, Appl. Catal. B, 2002, 37, 309-319.

    39. [39]

      [39] T. Nanba, S. Masukawa, A. Abe, J. Uchisawa, A. Obuchi, Appl. Catal. B, 2012, 123-124, 351-356.

  • 加载中
    1. [1]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    3. [3]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    4. [4]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    5. [5]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    6. [6]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    7. [7]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    8. [8]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    11. [11]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    12. [12]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    13. [13]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    14. [14]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    18. [18]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

Metrics
  • PDF Downloads(0)
  • Abstract views(373)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return