Citation:
Wei Li, Chuanfeng Huang, Dapeng Li, Pengju Huo, Mingfeng Wang, Lei Han, Gang Chen, Huihui Li, Xiaohong Li, Yongjuan Wang, Mengyan Wang. Derived oil production by catalytic pyrolysis of scrap tires[J]. Chinese Journal of Catalysis,
;2016, 37(4): 526-532.
doi:
10.1016/S1872-2067(15)60998-6
-
Scrap tires were pyrolyzed in a continuously stirred batch reactor in the presence and absence of catalysts. The maximum yield of derived oil was up to 55.65 wt% at the optimum temperature, 500 ℃. The catalytic pyrolysis was performed using 1.0 wt% (on a scrap tire weight basis) of catalysts based on ZSM-5, USY, β, SAPO-11, and ZSM-22. The oil products were characterized using simulation distillation, elemental analysis, and gas chromatography-mass spectrometry. The results show that using a catalyst can increase the conversion of scrap tires to gas and decrease char by-products; the yield of derived oil remains unchanged or a little lower. The oils derived from catalytic pyrolysis had H/C ratios of 1.55-1.65 and contained approximately 70-75 wt% light oil, 0.3-0.58 wt% S and 0.78-1.0 wt% N. Catalysts with high acid strengths and appropriate pore sizes, such as ZSM-5, USY, β, and SAPO-11, increased the amount of single-ring aromatics in the light-middle-fraction oil to 45 wt%. The derived oil can therefore be used as a petrochemical feedstock for producing high-value-added chemical products or fuel oil.
-
Keywords:
- Scrap tire,
- Catalytic pyrolysis,
- Derived oil,
- Aromatic
-
-
-
[1]
[1] B. Z. Qian, J. F. Zhu, Rubber Plast. Resour. Utili., 2010, (4), 30-41.
-
[2]
[2] J. H. Yan, Y. L. Gao, Z. X. Zhang, Y. Chi, K. F. Cen, J. Fuel Chem. Technol., 2003, 31, 589-594.
-
[3]
[3] P. T. Williams, A. J. Cunliffe, A. J. Brindle, J. Engery Inst., 2001, 74, 100-112.
-
[4]
[4] S. Q. Li, Q. Yao, Y. Chi, J. H. Yan, K. F. Cen, Ind. Eng. Chem. Res., 2004, 43, 5133-5145.
-
[5]
[5] P. T. Williams, A. J. Brindle, Waste Manage Res., 2002, 20, 546-555.
-
[6]
[6] P. T. Williams, A. J. Brindle, Fuel, 2003, 82, 1023-1031.
-
[7]
[7] J. A. Conesa, I. Martín-Gullón, R. Font, J. Anal. Appl. Pyrolysis., 2005, 74, 265-269.
-
[8]
[8] G. San Miguel, J. Aguado, D. P. Serrano, J. M. Escola, Appl. Catal. B, 2006, 64, 209-219.
-
[9]
[9] P. T. Williams, A. J. Brindle, J. Anal. Appl. Pyrolysis., 2003, 67, 143-164.
-
[10]
[10] P. T. Williams, A. J. Brindle, Fuel, 2002, 81, 2425-2434.
-
[11]
[11] E. Aylón, A. Fernández-Colino, R. Murillo, M. V. Navarro, T. García, A. M. Mastral, Waste Manage, 2010, 30, 1220-1224.
-
[12]
[12] A. M. Mastral, R. Murillo, M. S. Callén, T. García, C. E. Snape, Energy Fuel, 2000, 14, 739-744.
-
[13]
[13] R. Murillo, E. Aylón, M. V. Navarro, M. S. Callén, A. Aranda, A. M. Mastral, Fuel Processing Technol., 2006, 87, 143-147.
-
[14]
[14] S. Baumlin, F. Broust, M. Ferrer, N. Meunier, E. Marty, J. Lede, Chem. Eng. Sci., 2005, 60, 41-55.
-
[15]
[15] W. J. Hall, P. T. Williams, J. Anal. Appl. Pyrolysis., 2008, 81, 139-147.
-
[16]
[16] T. Miyazawa, T. Kimura, J. Nishikawa, S. Kado, K. Kunimori, K. Tomishige, Catal.Today, 2006, 115, 254-262.
-
[17]
[17] C. Berrueco, E. Esperanza, F. J. Mastral, J. Ceamanos, P. García-Bacaicoa, J. Anal. Appl. Pyrolysis., 2005, 74, 245-253.
-
[18]
[18] M. F. Laresgoiti, B. M. Caballero, I. De Marco, A. Torres, M. A. Cabrero, M. J. Chomón, J. Anal. Appl. Pyrolysis., 2004, 71, 917-934.
-
[19]
[19] D. P. Serrano, J. Aguado, J. M. Escola, J. M. Rodriguez, G. San Miguel, J. Anal. Appl. Pyrolysis., 2005, 74, 370-378.
-
[20]
[20] D. P. Serrano, J. Aguado, J. M. Escola, E. Garagorri, J. M. Rodríguez, L. Morselli, G. Palazzi, R. Orsi, Appl. Catal. B, 2004, 49, 257-265.
-
[21]
[21] F. A. López, T. A. Centeno, F. J. Alguacil, B. Lobato, J. Hazard Mater., 2011, 190, 285-292.
-
[22]
[22] R. Murillo, A. Aranda, E. Aylón, M. S. Callén, A. M. Mastral, Ind. Eng. Chem. Res., 2006, 45, 1734-1738.
-
[23]
[23] M. R. Islam, H. Hiroyuki, A. R. Beg, T. Kazunori, Int. J. Elec. Power, 2008, 6, 1359.
-
[24]
[24] H. Pakdel, D. M. Pantea, C. Roy, J. Anal. Appl. Pyrolysis., 2001, 57, 91-107.
-
[25]
[25] J. Schirmer, J. S. Kim, E. Klemn, J. Anal. Appl. Pyrolysis., 2001, 60, 205-217.
-
[1]
-
-
-
[1]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[2]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[3]
Jiarui Wu , Gengxin Wu , Yan Wang , Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014
-
[4]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[6]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[7]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[8]
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
-
[9]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[10]
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032
-
[11]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[12]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[13]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[14]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[15]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[16]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
-
[17]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[18]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[19]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[20]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(974)
- HTML views(212)