Citation:
Mingzhou Wu, Wangcheng Zhan, Yun Guo, Yunsong Wang, Yanglong Guo, Xueqing Gong, Li Wang, Guanzhong Lu. Solvent-free selective oxidation of cyclohexane with molecular oxygen over manganese oxides: Effect of the calcination temperature[J]. Chinese Journal of Catalysis,
;2016, 37(1): 184-192.
doi:
10.1016/S1872-2067(15)60983-4
-
The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction, N2 adsorption-desorption, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction, O2 temperature-programmed desorption, and thermogravimetry-differential analysis. The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined. It was found that the MnOx-500 catalyst, calcined at 500 ℃, consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area. Unlike MnOx-500, the MnOx-400 catalyst prepared at 400 ℃ was composed solely of Mn3O4 and Mn5O8 and had a higher surface area. The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors, including a higher concentration of surface adsorbed oxygen, greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst. The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated, such as the reaction temperature, reaction time, and initial oxygen pressure. Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 ℃, an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst. In contrast, employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone. After being recycled through 10 replicate uses, the catalytic activity of the MnOx-400 catalyst was unchanged, demonstrating its good stability.
-
-
-
[1]
[1] E. Roduner, W. Kaim, B. Sarkar, V. B. Urlacher, J. Pleiss, R. Gläser, W. D. Einicke, G. A. Sprenger, U. Beifuß, E. Klemm, C. Liebner, H. Hieronymus, S. F. Hsu, B. Plietker, S. Laschat, ChemCatChem, 2013, 5, 82.
-
[2]
[2] A. Sakthivel, P. Selvam, J. Catal., 2002, 211, 134.
-
[3]
[3] L. Gómez-Hortigüela, F. Corà, C. R. A. Catlow, ACS Catal., 2011, 1, 18.
-
[4]
[4] K. Kamata, K. Yonehara, Y. Nakagawa, K. Uehara, N. Mizuno, Nat. Chem., 2010, 2, 478.
-
[5]
[5] K. Weissermel, H. J. Horpe, Industrial Organic Chemistry, 2nd ed., Wiley-VCH, Weinheim, 1993.
-
[6]
[6] A. K. Suresh, M. M. Sharma, T. Sridhar, Ind. Eng. Chem. Res., 2000, 39, 3958.
-
[7]
[7] U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. de Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinace, E. L. Fires, Appl. Catal. A, 2001, 211, 1.
-
[8]
[8] C. C. Guo, M. F. Chu, Q. Liu, Y. Liu, D. C. Guo, X. Q. Liu, Appl. Catal. A, 2003, 246, 303.
-
[9]
[9] C. C. Guo, G. Huang, X. B. Zhang, D. C. Guo, Appl. Catal. A, 2003, 247, 261.
-
[10]
[10] L. P. Zhou, J. Xu, H. Miao, F. Wang, X. Q. Li, Appl. Catal. A, 2005, 292, 223.
-
[11]
[11] P. R. Makgwane, S. S. Ray, Catal. Commun., 2014, 54, 118.
-
[12]
[12] A. Selvamani, M. Selvaraj, M. Gurulakshmi, R. Ramya, K. Shanthi, J. Nanosci. Nanotechnol., 2014, 14, 2864.
-
[13]
[13] R. Zhao, Y. Q. Wang, Y. L. Guo, Y. Guo, X. H. Liu, Z. G. Zhang, Y. S. Wang, W. C Zhan, G. Z. Lu, Green Chem., 2006, 8, 459.
-
[14]
[14] W. C. Zhan, G. Z. Lu, Y. L. Guo, Y. Guo, Y. Q. Wang, Y. S. Wang, Z. G. Zhang, X. H. Liu, J. Rare Earths, 2008, 26, 515.
-
[15]
[15] J. Li, Y. Shi, L. Xu, G. Z. Lu, Ind. Eng. Chem. Res., 2010, 49, 5392.
-
[16]
[16] G. Qian, D. Ji, G. M. Lu, R. Zhao, Y. X. Qi, J. S. Suo, J. Catal., 2005, 232, 378.
-
[17]
[17] H. Yu, F. Peng, J. Tan, X. W. Hu, H. J. Wang, J. Yang, W. X. Zheng, Angew. Chem. Int. Ed., 2011, 50, 3978.
-
[18]
[18] X. X. Yang, H. Yu, F. Peng, H. J. Wang, ChemSusChem, 2012, 5, 1213.
-
[19]
[19] N. V. Maksimchuk, K. A. Kovalenko, V. P. Fedin, O. A. Kholdeeva, Chem. Commun., 2012, 48, 6812.
-
[20]
[20] J. L. Long, H. L. Liu, S. J. Wu, S. J. Liao, Y. W. Li, ACS Catal., 2013, 3, 647.
-
[21]
[21] Y. C. Zhang, W. L. Dai, G. J. Wu, N. J. Guan, L. D. Li, Chin. J. Catal., 2014, 35, 279.
-
[22]
[22] S. Xue, G. J. Chen, Z. Y. Long, Y. Zhou, J. Wang, RSC Adv., 2015, 5, 19306.
-
[23]
[23] B. Modén, L. Oliviero, J. Dakka, J. G. Santiesteban, E. Iglesia, J. Phys. Chem. B, 2004, 108, 5552.
-
[24]
[24] L. P. Zhou, J. Xu, H. Miao, X. Q. Li, F. Wang, Catal. Lett., 2005, 99, 231.
-
[25]
[25] C. Chen, J. Xu, Q. H. Zhang, H. Ma, H. Miao, L. P. Zhou, J. Phys. Chem. C, 2009, 113, 2855.
-
[26]
[26] W. Z. Zhong, T. Qiao, J. Dai, L. Q. Mao, Q. Xu, G. Q. Zou, X. X. Liu, D. L. Yin, F. P. Zhao, J. Catal., 2015, 330, 208.
-
[27]
[27] J. Pike, J. Hanson, L. H. Zhang, S. W. Chan, Chem. Mater., 2007, 19, 5609.
-
[28]
[28] Q. F. Deng, T. Z. Ren, Z. Y. Yuan, React. Kinet. Mech. Catal., 2013, 108, 507.
-
[29]
[29] S. J. Yang, C. Z. Wang, J. H. Li, N. Q. Yan, L. Ma, H. Z. Chang, Appl. Catal. B, 2011, 110, 71.
-
[30]
[30] J. H. Chen, M. Q. Shen, X. Q. Wang, G. S. Qi, J. Wang, W. Li, Appl. Catal. B, 2013, 134-135, 251.
-
[31]
[31] X. Y. Wang, K. Qian, L. Dao, Appl. Catal. B, 2009, 86, 166.
-
[32]
[32] H. C. Yao, Y. F. Yu Yao, J. Catal., 1984, 86, 254.
-
[33]
[33] J. Carnö, M. Ferrandon, E. Björnbom, S. Järås, Appl. Catal. A, 1997, 155, 265.
-
[34]
[34] W. M. Wang, Y. N. Yang, J. Y. Zhang, Appl. Catal. A, 1995, 133, 81.
-
[35]
[35] E. R. Stobbe, B. A. de Boer, J. W. Geus, Catal. Today, 1999, 47, 161.
-
[36]
[36] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, J. Catal., 2007, 251, 7.
-
[37]
[37] A. A. Mirzaei, H. R. Shaterian, M. Habibi, G. J. Hutchings, S. H. Taylor, Appl. Catal. A, 2003, 253, 499.
-
[38]
[38] X. Wang, Y. C. Xie, New J. Chem., 2001, 25, 964.
-
[39]
[39] Y. Kobayashi, J. Horiguchi, S. Kobayashi, Y. Yamazaki, K. Omata, D. Nagao, M. Konno, M. Yamada, Appl. Catal. A, 2011, 395, 129.
-
[40]
[40] Y. L. Wang, G. H. Luo, X. Xu, J. J. Xia, Catal. Commun., 2014, 57, 83.
-
[41]
[41] A. Ramanathan, M. S. Hamdy, R. Parton, T. Maschmeyer, J. C. Jansen, U. Hanefeld, Appl. Catal. A, 2009, 355, 78.
-
[42]
[42] M. Conte, X. Liu, D. M. Murphy, K. Whiston, G. J. Hutchings, Phys. Chem. Chem. Phys., 2012, 14, 16279.
-
[43]
[43] G. Q. Zou, W. Z. Zhong, Q. Xu, J. F. Xiao, C. Liu, Y. Q. Li, L. Q. Mao, S. Kirk, D. L. Yin, Catal. Commun., 2015, 58, 46.
-
[44]
[44] R. Maheswari, R. Anand, G. Imran, J. Porous Mater., 2012, 19, 283.
-
[45]
[45] I. Hermans, J. Peeters, P. A. Jacobs, J. Phys. Chem. A, 2008, 112, 1747.
-
[46]
[46] J. Li, X. Li, Y. Shi, D. S. Mao, G. Z. Lu, Catal. Lett., 2010, 137, 180.
-
[1]
-
-
-
[1]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[2]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[3]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[4]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[5]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[6]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[7]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[8]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[9]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[10]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[11]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[12]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[13]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[14]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[15]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[16]
Mingxin LU , Liyang ZHOU , Xiaoyu XU , Xiaoying FENG , Hui WANG , Bin YAN , Jie XU , Chao CHEN , Hui MEI , Feng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206
-
[17]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[18]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[19]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[20]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(612)
- HTML views(76)