Citation: Mingzhou Wu, Wangcheng Zhan, Yun Guo, Yunsong Wang, Yanglong Guo, Xueqing Gong, Li Wang, Guanzhong Lu. Solvent-free selective oxidation of cyclohexane with molecular oxygen over manganese oxides: Effect of the calcination temperature[J]. Chinese Journal of Catalysis, ;2016, 37(1): 184-192. doi: 10.1016/S1872-2067(15)60983-4 shu

Solvent-free selective oxidation of cyclohexane with molecular oxygen over manganese oxides: Effect of the calcination temperature

  • Corresponding author: Wangcheng Zhan,  Guanzhong Lu, 
  • Received Date: 9 August 2015
    Available Online: 22 September 2015

    Fund Project: 国家重点基础研究发展计划(2010CB732300) (2010CB732300) 国家自然科学基金(21103048). (21103048)

  • The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction, N2 adsorption-desorption, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction, O2 temperature-programmed desorption, and thermogravimetry-differential analysis. The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined. It was found that the MnOx-500 catalyst, calcined at 500 ℃, consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area. Unlike MnOx-500, the MnOx-400 catalyst prepared at 400 ℃ was composed solely of Mn3O4 and Mn5O8 and had a higher surface area. The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors, including a higher concentration of surface adsorbed oxygen, greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst. The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated, such as the reaction temperature, reaction time, and initial oxygen pressure. Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 ℃, an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst. In contrast, employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone. After being recycled through 10 replicate uses, the catalytic activity of the MnOx-400 catalyst was unchanged, demonstrating its good stability.
  • 加载中
    1. [1]

      [1] E. Roduner, W. Kaim, B. Sarkar, V. B. Urlacher, J. Pleiss, R. Gläser, W. D. Einicke, G. A. Sprenger, U. Beifuß, E. Klemm, C. Liebner, H. Hieronymus, S. F. Hsu, B. Plietker, S. Laschat, ChemCatChem, 2013, 5, 82.

    2. [2]

      [2] A. Sakthivel, P. Selvam, J. Catal., 2002, 211, 134.

    3. [3]

      [3] L. Gómez-Hortigüela, F. Corà, C. R. A. Catlow, ACS Catal., 2011, 1, 18.

    4. [4]

      [4] K. Kamata, K. Yonehara, Y. Nakagawa, K. Uehara, N. Mizuno, Nat. Chem., 2010, 2, 478.

    5. [5]

      [5] K. Weissermel, H. J. Horpe, Industrial Organic Chemistry, 2nd ed., Wiley-VCH, Weinheim, 1993.

    6. [6]

      [6] A. K. Suresh, M. M. Sharma, T. Sridhar, Ind. Eng. Chem. Res., 2000, 39, 3958.

    7. [7]

      [7] U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. de Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinace, E. L. Fires, Appl. Catal. A, 2001, 211, 1.

    8. [8]

      [8] C. C. Guo, M. F. Chu, Q. Liu, Y. Liu, D. C. Guo, X. Q. Liu, Appl. Catal. A, 2003, 246, 303.

    9. [9]

      [9] C. C. Guo, G. Huang, X. B. Zhang, D. C. Guo, Appl. Catal. A, 2003, 247, 261.

    10. [10]

      [10] L. P. Zhou, J. Xu, H. Miao, F. Wang, X. Q. Li, Appl. Catal. A, 2005, 292, 223.

    11. [11]

      [11] P. R. Makgwane, S. S. Ray, Catal. Commun., 2014, 54, 118.

    12. [12]

      [12] A. Selvamani, M. Selvaraj, M. Gurulakshmi, R. Ramya, K. Shanthi, J. Nanosci. Nanotechnol., 2014, 14, 2864.

    13. [13]

      [13] R. Zhao, Y. Q. Wang, Y. L. Guo, Y. Guo, X. H. Liu, Z. G. Zhang, Y. S. Wang, W. C Zhan, G. Z. Lu, Green Chem., 2006, 8, 459.

    14. [14]

      [14] W. C. Zhan, G. Z. Lu, Y. L. Guo, Y. Guo, Y. Q. Wang, Y. S. Wang, Z. G. Zhang, X. H. Liu, J. Rare Earths, 2008, 26, 515.

    15. [15]

      [15] J. Li, Y. Shi, L. Xu, G. Z. Lu, Ind. Eng. Chem. Res., 2010, 49, 5392.

    16. [16]

      [16] G. Qian, D. Ji, G. M. Lu, R. Zhao, Y. X. Qi, J. S. Suo, J. Catal., 2005, 232, 378.

    17. [17]

      [17] H. Yu, F. Peng, J. Tan, X. W. Hu, H. J. Wang, J. Yang, W. X. Zheng, Angew. Chem. Int. Ed., 2011, 50, 3978.

    18. [18]

      [18] X. X. Yang, H. Yu, F. Peng, H. J. Wang, ChemSusChem, 2012, 5, 1213.

    19. [19]

      [19] N. V. Maksimchuk, K. A. Kovalenko, V. P. Fedin, O. A. Kholdeeva, Chem. Commun., 2012, 48, 6812.

    20. [20]

      [20] J. L. Long, H. L. Liu, S. J. Wu, S. J. Liao, Y. W. Li, ACS Catal., 2013, 3, 647.

    21. [21]

      [21] Y. C. Zhang, W. L. Dai, G. J. Wu, N. J. Guan, L. D. Li, Chin. J. Catal., 2014, 35, 279.

    22. [22]

      [22] S. Xue, G. J. Chen, Z. Y. Long, Y. Zhou, J. Wang, RSC Adv., 2015, 5, 19306.

    23. [23]

      [23] B. Modén, L. Oliviero, J. Dakka, J. G. Santiesteban, E. Iglesia, J. Phys. Chem. B, 2004, 108, 5552.

    24. [24]

      [24] L. P. Zhou, J. Xu, H. Miao, X. Q. Li, F. Wang, Catal. Lett., 2005, 99, 231.

    25. [25]

      [25] C. Chen, J. Xu, Q. H. Zhang, H. Ma, H. Miao, L. P. Zhou, J. Phys. Chem. C, 2009, 113, 2855.

    26. [26]

      [26] W. Z. Zhong, T. Qiao, J. Dai, L. Q. Mao, Q. Xu, G. Q. Zou, X. X. Liu, D. L. Yin, F. P. Zhao, J. Catal., 2015, 330, 208.

    27. [27]

      [27] J. Pike, J. Hanson, L. H. Zhang, S. W. Chan, Chem. Mater., 2007, 19, 5609.

    28. [28]

      [28] Q. F. Deng, T. Z. Ren, Z. Y. Yuan, React. Kinet. Mech. Catal., 2013, 108, 507.

    29. [29]

      [29] S. J. Yang, C. Z. Wang, J. H. Li, N. Q. Yan, L. Ma, H. Z. Chang, Appl. Catal. B, 2011, 110, 71.

    30. [30]

      [30] J. H. Chen, M. Q. Shen, X. Q. Wang, G. S. Qi, J. Wang, W. Li, Appl. Catal. B, 2013, 134-135, 251.

    31. [31]

      [31] X. Y. Wang, K. Qian, L. Dao, Appl. Catal. B, 2009, 86, 166.

    32. [32]

      [32] H. C. Yao, Y. F. Yu Yao, J. Catal., 1984, 86, 254.

    33. [33]

      [33] J. Carnö, M. Ferrandon, E. Björnbom, S. Järås, Appl. Catal. A, 1997, 155, 265.

    34. [34]

      [34] W. M. Wang, Y. N. Yang, J. Y. Zhang, Appl. Catal. A, 1995, 133, 81.

    35. [35]

      [35] E. R. Stobbe, B. A. de Boer, J. W. Geus, Catal. Today, 1999, 47, 161.

    36. [36]

      [36] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, J. Catal., 2007, 251, 7.

    37. [37]

      [37] A. A. Mirzaei, H. R. Shaterian, M. Habibi, G. J. Hutchings, S. H. Taylor, Appl. Catal. A, 2003, 253, 499.

    38. [38]

      [38] X. Wang, Y. C. Xie, New J. Chem., 2001, 25, 964.

    39. [39]

      [39] Y. Kobayashi, J. Horiguchi, S. Kobayashi, Y. Yamazaki, K. Omata, D. Nagao, M. Konno, M. Yamada, Appl. Catal. A, 2011, 395, 129.

    40. [40]

      [40] Y. L. Wang, G. H. Luo, X. Xu, J. J. Xia, Catal. Commun., 2014, 57, 83.

    41. [41]

      [41] A. Ramanathan, M. S. Hamdy, R. Parton, T. Maschmeyer, J. C. Jansen, U. Hanefeld, Appl. Catal. A, 2009, 355, 78.

    42. [42]

      [42] M. Conte, X. Liu, D. M. Murphy, K. Whiston, G. J. Hutchings, Phys. Chem. Chem. Phys., 2012, 14, 16279.

    43. [43]

      [43] G. Q. Zou, W. Z. Zhong, Q. Xu, J. F. Xiao, C. Liu, Y. Q. Li, L. Q. Mao, S. Kirk, D. L. Yin, Catal. Commun., 2015, 58, 46.

    44. [44]

      [44] R. Maheswari, R. Anand, G. Imran, J. Porous Mater., 2012, 19, 283.

    45. [45]

      [45] I. Hermans, J. Peeters, P. A. Jacobs, J. Phys. Chem. A, 2008, 112, 1747.

    46. [46]

      [46] J. Li, X. Li, Y. Shi, D. S. Mao, G. Z. Lu, Catal. Lett., 2010, 137, 180.

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    6. [6]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    12. [12]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    16. [16]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(1)
  • Abstract views(612)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return