Citation:
Vladimir V. Chesnokov, Olga Yu. Podyacheva, Alexander N. Shmakov, Lidiya S. Kibis, Andrei I. Boronin, Zinfer R. Ismagilov. Comparison of growth mechanisms of undoped and nitrogen-doped carbon nanofibers on nickel-containing catalysts[J]. Chinese Journal of Catalysis,
;2016, 37(1): 169-176.
doi:
10.1016/S1872-2067(15)60982-2
-
The growth mechanisms of carbon nanofibers on Ni catalysts and nitrogen-doped carbon nanofibers on Ni and Ni-Cu catalysts were studied. The growth of both types of nanofibers was found to occur by a mechanism that included the formation of surface non-stoichiometric nickel carbide followed by the dissolution and diffusion of carbon, or carbon and nitrogen into the bulk of the catalyst particles.
-
-
-
[1]
[1] J. Zhu, A. Holmen, D. Chen, ChemCatChem, 2013, 5, 378.
-
[2]
[2] D. S. Su, S. Perathoner, G. Centi, Chem. Rev., 2013, 113, 5782.
-
[3]
[3] R. T. K. Baker, Carbon, 1989, 27, 315.
-
[4]
[4] Ph. Serp, M. Corrias, Ph. Kalck, Appl. Catal. A, 2003, 253, 337.
-
[5]
[5] K. P. De Jong, J. W. Geus, Catal. Rev. Sci. Eng., 2000, 42, 481.
-
[6]
[6] A. Jorio, G. Dresselhaus, M. S. Dresselhaus, Carbon Nanotubes Advanced Topics in the Synthesis, Structure, Properties and Applications, Springer, New York, 2008.
-
[7]
[7] D. S. Su, R. Schlögl, ChemSusChem, 2010, 3, 136.
-
[8]
[8] E. Antolini, Appl. Catal. B, 2009, 88, 1.
-
[9]
[9] C. Ampelli, S. Perathoner, G. Centi, Chin. J. Catal., 2014, 35, 783.
-
[10]
[10] V. V. Chesnokov, R. A. Buyanov, Russian Chem. Rev., 2000, 69, 623.
-
[11]
[11] V. N. Parmon, Catal. Lett., 1996, 42, 195.
-
[12]
[12] V. N. Parmon, Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis, Elsevier, Amsterdam, 2009, 321.
-
[13]
[13] J. P. Tessonnier, D. S. Su, ChemSusChem, 2011, 4, 824.
-
[14]
[14] M. Terrones, A. Jorio, M. Endo, A. M. Rao, Y. A. Kim, T. Hayashi, H. Terrones, J. C. Charlier, G. Dresselhaus, M. S. Dresselhaus, Mater. Today, 2004, 7, 30.
-
[15]
[15] C. P. Ewels, M. Glerup, J. Nanosci. Nanotechnol., 2005, 5, 1345
-
[16]
[16] P. Ayala, R. Arenal, M. Rümmeli, A. Rubio, T. Pichler, Carbon, 2010, 48, 575.
-
[17]
[17] Y. X. Zhang, J. Zhang, D. S. Su, ChemSusChem, 2014, 7, 1240.
-
[18]
[18] O. Yu Podyacheva, Z. R. Ismagilov, Catal. Today, 2015, 249, 12.
-
[19]
[19] G. Ciric-Marjanovic, I. Pasti, S. Mentus, Progr. Mater. Sci., 2015, 69, 61.
-
[20]
[20] O. Yu Podyacheva, Z. R. Ismagilov, A. I. Boronin, L. S. Kibis, E. M. Slavinskaya, A. S. Noskov, N. V. Shikina, V. A. Ushakov, A. V. Ischenko, Catal. Today, 2012, 186, 42.
-
[21]
[21] A. B. Ayusheev, O. P. Taran, I. A. Seryak, O. Yu Podyacheva, C. Descorme, M. Besson, L. S. Kibis, A. I. Boronin, A. I. Romanenko, Z. R. Ismagilov, V. Parmon, Appl. Catal. B, 2014, 146, 177.
-
[22]
[22] L. J. Jia, D. A. Bulushev, O. Yu Podyacheva, A. I. Boronin, L. S. Kibis, E. Yu Gerasimov, S. Beloshapkin, I. A. Seryak, Z. R. Ismagilov, J. R. H. Ross, J. Catal., 2013, 307, 94.
-
[23]
[23] O. A. Stonkus, L. S. Kibis, O. Yu Podyacheva, E. M. Slavinskaya, V. I. Zaikovskii, A. H. Hassan, L. S. Hampe, A. Leonhardt, Z. R. Ismagilov, A. S. Noskov, A. I. Boronin, ChemCatChem, 2014, 6, 2115.
-
[24]
[24] O. Yu Podyacheva, A. N. Stadnichenko, S. A. Yashnik, O. A. Stonkus, E. M. Slavinskaya, A. I. Boronin, A. V. Puzynin, Z. R. Ismagilov, Chin. J. Catal., 2014, 35, 960.
-
[25]
[25] D. Chen, A. Holmen, Z. J. Sui, X. G. Zhou, Chin. J. Catal., 2014, 35, 824.
-
[26]
[26] M. Terrones, P. M. Ajayan, F. Banhart, X. Blasé, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Rühle, T. Seeger, H. Terrones, Appl. Phys. A, 2002, 74, 355.
-
[27]
[27] S. Trasobares, O. Stéphan, C. Colliex, W. K. Hsu, H. W. Kroto, D. R. M. Walton, J. Chem. Phys., 2002, 116, 8966.
-
[28]
[28] S. van Dommele, A. Romero-Izquirdo, R. Brydson, K. P. de Jong, J. H. Bitter, Carbon, 2008, 46, 138.
-
[29]
[29] I. S. Lyubutin, O. A. Anosova, K. V. Frolov, S. N. Sulyanov, A. V. Okotrub, A. G. Kudashov, L. G. Bulusheva, Carbon, 2012, 50, 2628.
-
[30]
[30] O. Yu Podyacheva, A. N. Shmakov, A. I. Boronin, L. S. Kibis, S. V. Koscheev, E. Yu Gerasimov, Z. R. Ismagilov, J. Energy Chem., 2013, 22, 270.
-
[31]
[31] O. Yu Podyacheva, A. N. Shmakov, Z. R. Ismagilov, V. N. Parmon, Doklady. Phys. Chem., 2011, 439, 127.
-
[32]
[32] O. Yu Podyacheva, A. N. Shmakov, Z. R. Ismagilov, Carbon, 2013, 52, 486.
-
[33]
[33] V. V. Chesnokov, A. S. Chichkan, Int. J. Hydrogen Energy, 2009, 34, 2979.
-
[34]
[34] A. E. Shalagina, Z. R. Ismagilov, O. Yu Podyacheva, R. I. Kvon, V. A. Ushakov, Carbon, 2007, 45, 1808.
-
[35]
[35] C. A. Bernardo, L. S. Lobo, J. Catal., 1975, 37, 267.
-
[36]
[36] A. Rinaldi, J. P. Tessonier, M. E. Schuster, R. Blume, F. Girgsdies, Q. Zhang, T. Jacob, S. B. A. Hamid, D. S. Su, R. Schlögl, Angew. Chem. Int. Ed., 2011, 50, 3313.
-
[37]
[37] K. S. Kim, N. Winograd, Surf. Sci., 1974, 43, 625.
-
[38]
[38] M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Phys. Chem. Chem. Phys., 2012, 14, 2434.
-
[39]
[39] B. P. Payne, M. C. Biesinger, N. S. McIntyre, J. Electron. Spect. Rel Phen., 2012, 185, 159.
-
[40]
[40] L. Zwell, E. J. Fasiska, Y. Nakada, A. S. Keh, Trans. Metal Soc. AIME, 1968, 242, 765.
-
[41]
[41] I. Alstrup, J. Catal., 1988, 109, 241.
-
[42]
[42] A. J. H. M. Kock, P. K. de Bokx, E. Boellaard, W. Klop, J. W. Geus, J. Catal., 1985, 96, 468.
-
[43]
[43] W. L. Holstein. J. Catal., 1995, 152, 42.
-
[44]
[44] G. G. Tibbetts, M. G. Devour, E. J. Rodda, Carbon, 1987, 25, 367.
-
[45]
[45] T. V. Reshetenko, L. B. Avdeeva, V. A. Ushakov, E. M. Moroz, A. N. Shmakov, V. V. Kriventsov, D. I. Kochubey, Yu T. Pavlyukhin, A. L. Chuvilin, Z. R. Ismagilov, Appl. Catal. A, 2004, 270, 87.
-
[46]
[46] L. B. Avdeeva, O. V. Goncharova, D. I. Kochubey, V. I. Zaikovskii, L. M. Plyasova, B. N. Novgorodov, Sh. K. Shaikhutdinov, Appl. Catal. A, 1996, 141, 117.
-
[47]
[47] Z. B. He, C. S. Lee, J. L. Maurice, D. Pribat, P. Haghi-Ashtiani, C. S. Cojocaru, Carbon, 2011, 49, 4710.
-
[1]
-
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[3]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[4]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[5]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[6]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[7]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[8]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[9]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[10]
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
-
[11]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[12]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[13]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[14]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[15]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[16]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[17]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[18]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[19]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[20]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(533)
- HTML views(66)