Citation: Vladimir V. Chesnokov, Olga Yu. Podyacheva, Alexander N. Shmakov, Lidiya S. Kibis, Andrei I. Boronin, Zinfer R. Ismagilov. Comparison of growth mechanisms of undoped and nitrogen-doped carbon nanofibers on nickel-containing catalysts[J]. Chinese Journal of Catalysis, ;2016, 37(1): 169-176. doi: 10.1016/S1872-2067(15)60982-2 shu

Comparison of growth mechanisms of undoped and nitrogen-doped carbon nanofibers on nickel-containing catalysts

  • Corresponding author: Olga Yu. Podyacheva, 
  • Received Date: 28 August 2015
    Available Online: 30 September 2015

  • The growth mechanisms of carbon nanofibers on Ni catalysts and nitrogen-doped carbon nanofibers on Ni and Ni-Cu catalysts were studied. The growth of both types of nanofibers was found to occur by a mechanism that included the formation of surface non-stoichiometric nickel carbide followed by the dissolution and diffusion of carbon, or carbon and nitrogen into the bulk of the catalyst particles.
  • 加载中
    1. [1]

      [1] J. Zhu, A. Holmen, D. Chen, ChemCatChem, 2013, 5, 378.

    2. [2]

      [2] D. S. Su, S. Perathoner, G. Centi, Chem. Rev., 2013, 113, 5782.

    3. [3]

      [3] R. T. K. Baker, Carbon, 1989, 27, 315.

    4. [4]

      [4] Ph. Serp, M. Corrias, Ph. Kalck, Appl. Catal. A, 2003, 253, 337.

    5. [5]

      [5] K. P. De Jong, J. W. Geus, Catal. Rev. Sci. Eng., 2000, 42, 481.

    6. [6]

      [6] A. Jorio, G. Dresselhaus, M. S. Dresselhaus, Carbon Nanotubes Advanced Topics in the Synthesis, Structure, Properties and Applications, Springer, New York, 2008.

    7. [7]

      [7] D. S. Su, R. Schlögl, ChemSusChem, 2010, 3, 136.

    8. [8]

      [8] E. Antolini, Appl. Catal. B, 2009, 88, 1.

    9. [9]

      [9] C. Ampelli, S. Perathoner, G. Centi, Chin. J. Catal., 2014, 35, 783.

    10. [10]

      [10] V. V. Chesnokov, R. A. Buyanov, Russian Chem. Rev., 2000, 69, 623.

    11. [11]

      [11] V. N. Parmon, Catal. Lett., 1996, 42, 195.

    12. [12]

      [12] V. N. Parmon, Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis, Elsevier, Amsterdam, 2009, 321.

    13. [13]

      [13] J. P. Tessonnier, D. S. Su, ChemSusChem, 2011, 4, 824.

    14. [14]

      [14] M. Terrones, A. Jorio, M. Endo, A. M. Rao, Y. A. Kim, T. Hayashi, H. Terrones, J. C. Charlier, G. Dresselhaus, M. S. Dresselhaus, Mater. Today, 2004, 7, 30.

    15. [15]

      [15] C. P. Ewels, M. Glerup, J. Nanosci. Nanotechnol., 2005, 5, 1345

    16. [16]

      [16] P. Ayala, R. Arenal, M. Rümmeli, A. Rubio, T. Pichler, Carbon, 2010, 48, 575.

    17. [17]

      [17] Y. X. Zhang, J. Zhang, D. S. Su, ChemSusChem, 2014, 7, 1240.

    18. [18]

      [18] O. Yu Podyacheva, Z. R. Ismagilov, Catal. Today, 2015, 249, 12.

    19. [19]

      [19] G. Ciric-Marjanovic, I. Pasti, S. Mentus, Progr. Mater. Sci., 2015, 69, 61.

    20. [20]

      [20] O. Yu Podyacheva, Z. R. Ismagilov, A. I. Boronin, L. S. Kibis, E. M. Slavinskaya, A. S. Noskov, N. V. Shikina, V. A. Ushakov, A. V. Ischenko, Catal. Today, 2012, 186, 42.

    21. [21]

      [21] A. B. Ayusheev, O. P. Taran, I. A. Seryak, O. Yu Podyacheva, C. Descorme, M. Besson, L. S. Kibis, A. I. Boronin, A. I. Romanenko, Z. R. Ismagilov, V. Parmon, Appl. Catal. B, 2014, 146, 177.

    22. [22]

      [22] L. J. Jia, D. A. Bulushev, O. Yu Podyacheva, A. I. Boronin, L. S. Kibis, E. Yu Gerasimov, S. Beloshapkin, I. A. Seryak, Z. R. Ismagilov, J. R. H. Ross, J. Catal., 2013, 307, 94.

    23. [23]

      [23] O. A. Stonkus, L. S. Kibis, O. Yu Podyacheva, E. M. Slavinskaya, V. I. Zaikovskii, A. H. Hassan, L. S. Hampe, A. Leonhardt, Z. R. Ismagilov, A. S. Noskov, A. I. Boronin, ChemCatChem, 2014, 6, 2115.

    24. [24]

      [24] O. Yu Podyacheva, A. N. Stadnichenko, S. A. Yashnik, O. A. Stonkus, E. M. Slavinskaya, A. I. Boronin, A. V. Puzynin, Z. R. Ismagilov, Chin. J. Catal., 2014, 35, 960.

    25. [25]

      [25] D. Chen, A. Holmen, Z. J. Sui, X. G. Zhou, Chin. J. Catal., 2014, 35, 824.

    26. [26]

      [26] M. Terrones, P. M. Ajayan, F. Banhart, X. Blasé, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Rühle, T. Seeger, H. Terrones, Appl. Phys. A, 2002, 74, 355.

    27. [27]

      [27] S. Trasobares, O. Stéphan, C. Colliex, W. K. Hsu, H. W. Kroto, D. R. M. Walton, J. Chem. Phys., 2002, 116, 8966.

    28. [28]

      [28] S. van Dommele, A. Romero-Izquirdo, R. Brydson, K. P. de Jong, J. H. Bitter, Carbon, 2008, 46, 138.

    29. [29]

      [29] I. S. Lyubutin, O. A. Anosova, K. V. Frolov, S. N. Sulyanov, A. V. Okotrub, A. G. Kudashov, L. G. Bulusheva, Carbon, 2012, 50, 2628.

    30. [30]

      [30] O. Yu Podyacheva, A. N. Shmakov, A. I. Boronin, L. S. Kibis, S. V. Koscheev, E. Yu Gerasimov, Z. R. Ismagilov, J. Energy Chem., 2013, 22, 270.

    31. [31]

      [31] O. Yu Podyacheva, A. N. Shmakov, Z. R. Ismagilov, V. N. Parmon, Doklady. Phys. Chem., 2011, 439, 127.

    32. [32]

      [32] O. Yu Podyacheva, A. N. Shmakov, Z. R. Ismagilov, Carbon, 2013, 52, 486.

    33. [33]

      [33] V. V. Chesnokov, A. S. Chichkan, Int. J. Hydrogen Energy, 2009, 34, 2979.

    34. [34]

      [34] A. E. Shalagina, Z. R. Ismagilov, O. Yu Podyacheva, R. I. Kvon, V. A. Ushakov, Carbon, 2007, 45, 1808.

    35. [35]

      [35] C. A. Bernardo, L. S. Lobo, J. Catal., 1975, 37, 267.

    36. [36]

      [36] A. Rinaldi, J. P. Tessonier, M. E. Schuster, R. Blume, F. Girgsdies, Q. Zhang, T. Jacob, S. B. A. Hamid, D. S. Su, R. Schlögl, Angew. Chem. Int. Ed., 2011, 50, 3313.

    37. [37]

      [37] K. S. Kim, N. Winograd, Surf. Sci., 1974, 43, 625.

    38. [38]

      [38] M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Phys. Chem. Chem. Phys., 2012, 14, 2434.

    39. [39]

      [39] B. P. Payne, M. C. Biesinger, N. S. McIntyre, J. Electron. Spect. Rel Phen., 2012, 185, 159.

    40. [40]

      [40] L. Zwell, E. J. Fasiska, Y. Nakada, A. S. Keh, Trans. Metal Soc. AIME, 1968, 242, 765.

    41. [41]

      [41] I. Alstrup, J. Catal., 1988, 109, 241.

    42. [42]

      [42] A. J. H. M. Kock, P. K. de Bokx, E. Boellaard, W. Klop, J. W. Geus, J. Catal., 1985, 96, 468.

    43. [43]

      [43] W. L. Holstein. J. Catal., 1995, 152, 42.

    44. [44]

      [44] G. G. Tibbetts, M. G. Devour, E. J. Rodda, Carbon, 1987, 25, 367.

    45. [45]

      [45] T. V. Reshetenko, L. B. Avdeeva, V. A. Ushakov, E. M. Moroz, A. N. Shmakov, V. V. Kriventsov, D. I. Kochubey, Yu T. Pavlyukhin, A. L. Chuvilin, Z. R. Ismagilov, Appl. Catal. A, 2004, 270, 87.

    46. [46]

      [46] L. B. Avdeeva, O. V. Goncharova, D. I. Kochubey, V. I. Zaikovskii, L. M. Plyasova, B. N. Novgorodov, Sh. K. Shaikhutdinov, Appl. Catal. A, 1996, 141, 117.

    47. [47]

      [47] Z. B. He, C. S. Lee, J. L. Maurice, D. Pribat, P. Haghi-Ashtiani, C. S. Cojocaru, Carbon, 2011, 49, 4710.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    10. [10]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    11. [11]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(0)
  • Abstract views(533)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return