Citation: Junjie Zhang, Fang Lu, Weiqiang Yu, Rui Lu, Jie Xu. Effects of alkaline additives on the formation of lactic acid in sorbitol hydrogenolysis over Ni/C catalyst[J]. Chinese Journal of Catalysis, ;2016, 37(1): 177-183. doi: 10.1016/S1872-2067(15)60976-7 shu

Effects of alkaline additives on the formation of lactic acid in sorbitol hydrogenolysis over Ni/C catalyst

  • Corresponding author: Fang Lu,  Jie Xu, 
  • Received Date: 28 August 2015
    Available Online: 24 September 2015

    Fund Project: 国家自然科学基金(21203183, 21233008, 21473188). (21203183, 21233008, 21473188)

  • Lactic acid is produced as a major byproduct during sorbitol hydrogenolysis under alkaline conditions. We investigated the effects of two different alkaline additives, Ca(OH)2 and La(OH)3, on lactic acid formation during sorbitol hydrogenolysis over Ni/C catalyst. In the case of Ca(OH)2, the selectivity of lactic acid was 8.9%. In contrast, the inclusion of La(OH)3 resulted in a sorbitol conversion of 99% with only trace quantities of lactic acid being detected. In addition, the total selectivity towards the C2 and C4 products increased from 20.0% to 24.5% going from Ca(OH)2 to La(OH)3. These results therefore indicated that La(OH)3 could be used as an efficient alkaline additive to enhance the conversion of sorbitol. Pyruvic aldehyde, which is formed as an intermediate during sorbitol hydrogenolysis, can be converted to both 1,2-propylene glycol and lactic acid by hydrogenation and rearrangement reactions, respectively. Notably, these two reactions are competitive. When Ca(OH)2 was used as an additive for sorbitol hydrogenolysis, both the hydrogenation and rearrangement reactions occurred. In contrast, the use of La(OH)3 favored the hydrogenation reaction, with only trace quantities of lactic acid being formed.
  • 加载中
    1. [1]

      [1] A. M. Ruppert, K. Weinberg, R. Palkovits, Angew. Chem. Int. Ed., 2012, 51, 2564.

    2. [2]

      [2] W. P. Deng, M. Liu, X. S. Tan, Q. H .Zhang, Y. Wang, J. Catal., 2010, 271, 22.

    3. [3]

      [3] S. Saravanamurugan, A. Riisager, ChemCatChem, 2013, 5, 1754.

    4. [4]

      [4] D. K. Sohounloue, C. Montassier, J. Barbier, React. Kinet. Catal. Lett., 1983, 22, 391.

    5. [5]

      [5] M. Banu, P. Venuvanalingam, R. Shanmugam, B. Viswanathan, S. Sivasanker, Top. Catal., 2012, 55, 897.

    6. [6]

      [6] I. M. Leo, M. L. Granados, J. L. G. Fierro, R. Mariscal, Chin. J. Catal., 2014, 35, 614.

    7. [7]

      [7] L. M. Ye, X. P. Duan, H. Q. Lin, Y. Z. Yuan, Catal. Today, 2012, 183, 65.

    8. [8]

      [8] X. G. Chen, X. C. Wang, S. X. Yao, X. D. Mu, Catal. Commun., 2013, 39, 86.

    9. [9]

      [9] L. Zhao, J. H. Zhou, Z. J. Sui, X. G. Zhou, Chem. Eng. Sci., 2010, 65, 30.

    10. [10]

      [10] K. Y. Wang, M. C. Hawley, T. D. Furney, Ind. Eng. Chem. Res., 1995, 34, 3766.

    11. [11]

      [11] J. Y. Sun, H. C. Liu, Green Chem., 2011, 13, 135.

    12. [12]

      [12] I. Clark, Ind. Eng. Chem., 1958, 50, 1125.

    13. [13]

      [13] J. Y. Sun, H. C. Liu, Catal. Today, 2014, 234, 75.

    14. [14]

      [14] M. Banu, S. Sivasanker, T. M. Sankaranarayanan, P. Venuvanalingam, Catal. Commun., 2011, 12, 673.

    15. [15]

      [15] T. A. Werpy, J. G. Frye, A. H. Zacher, D. J. Miller, US Patent 0 130 545. 2003.

    16. [16]

      [16] F. Auneau, M. Berchu, G. Aubert, C. Pinel, M. Besson, D. Todaro, M. Bernardi, T. Ponsetti, R. Di Felice, Catal. Today, 2014, 234, 100.

    17. [17]

      [17] J. H. Zhou, M. G Zhang, L. Zhao, P. Li, X. G. Zhou, W. K. Yuan, Catal. Today, 2009, 147, S225.

    18. [18]

      [18] L. Zhao, J. H. Zhou, H. Chen, M. G. Zhang, Z. J. Sui, X. G. Zhou, Korean J. Chem. Eng., 2010, 27, 1412.

    19. [19]

      [19] J. H. Zhou, G. C. Liu, Z. J. Sui, X. G. Zhou, W. K. Yuan, Chin. J. Catal., 2014, 35, 692.

    20. [20]

      [20] T. Soták, T. Schmidt, M. Hronec, Appl. Catal. A, 2013, 459, 26.

    21. [21]

      [21] Z. W. Huang, J. Chen, Y. Q. Jia, H. L. Liu, C. G .Xia, H. C. Liu, Appl. Catal. B, 2014, 147, 377.

    22. [22]

      [22] J. J. Zhang, F. Lu, W. Q. Yu, J. Z. Chen, S. Chen, J. Gao, J. Xu, Catal. Today, 2014, 234, 107.

    23. [23]

      [23] W. Q. Yu, F. Lu, Y. L. Yang, J. J. Zhang, J. Gao, F. Wang, J. Xu, Energy Environ. Focus, 2012, 1, 99.

    24. [24]

      [24] B. P. Gangwar, V. Palakollu, A. Singh, S. Kanvah, S. Sharma, RSC Adv., 2014, 4, 55407.

    25. [25]

      [25] R. Y. Sun, T. T. Wang, M. Y. Zheng, W. Q. Deng, J. F. Pang, A. Q. Wang, X. D. Wang, T. Zhang, ACS Catal., 2015, 5, 874.

    26. [26]

      [26] Z. G. Zhang, J. E. Jackson, D. J. Miller, Ind. Eng. Chem. Res., 2002, 41, 691.

    27. [27]

      [27] Z. G. Zhang, J. E. Jackson, D. J. Miller, Appl. Catal. A, 2001, 219, 89.

    28. [28]

      [28] E. P. Maris, R. J. Davis, J. Catal., 2007, 249, 328.

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(702)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return