Citation: Pingbo Zhang, Yan Zhou, Mingming Fan, Pingping Jiang. Catalytic synthesis of diethyl carbonate with supported Pd-Cu bimetallic nanoparticle catalysts: Cu(I) as the active species[J]. Chinese Journal of Catalysis, ;2015, 36(11): 2036-2043. doi: 10.1016/S1872-2067(15)60973-1 shu

Catalytic synthesis of diethyl carbonate with supported Pd-Cu bimetallic nanoparticle catalysts: Cu(I) as the active species

  • Corresponding author: Mingming Fan, 
  • Received Date: 29 August 2015
    Available Online: 16 September 2015

    Fund Project: 国家自然科学基金(21106054). (21106054)

  • Cupric oxide (CuO) and copper-cuprous oxide (Cu-Cu2O) nanoparticles were prepared by a simple hydrothermal method for the synthesis of diethyl carbonate (DEC) from ethanol. During these syntheses, varying NaOH and glucose concentrations were applied to explore and pinpoint the active species. It was found that PdCl2/CuO and PdCl2/Cu-Cu2O both catalysts exhibited good thermal stability and morphology. The results of catalytic tests showed that the catalysts prepared with 5 mol/L NaOH show superior catalytic performances because of their lower extent of agglomeration. It is noteworthy that the PdCl2/Cu-Cu2O catalysts were the most active, especially the PdCl2/Cu-Cu2O catalyst prepared with 10 mmol glucose and having a higher Cu2O concentration. In Pd(II)-Cu(II) (PdCl2/CuO) catalysts, there is an induction period, during which Pd(II) is reduced to Pd(0), that must occur prior to electron transfer between Pd and Cu, and this can slow the catalytic reaction. To further pinpoint the active species, PdCl2/Cu-Cu2O catalysts with different Cu2O contents were prepared by controlling the dosages of glucose. The maximum DEC yield obtained with these catalysts was 151.9 mg·g-1·h-1, corresponding to an ethanol conversion of 7.2% and 97.9% DEC selectivity on an ethanol basis. Therefore, it was concluded that Cu+ was the active species in this catalytic system, possibly because a higher proportion of Cu+ reduces the Pd2+ concentration and limits the CO oxidation side reaction, thus increasing DEC selectivity. In addition, Cu+ promotes electron transfer between Pd and Cu without an induction period, which could also promote the catalytic activity.
  • 加载中
    1. [1]

      [1] Pacheco M A, Marshall C L. Energy Fuels, 1997, 11: 2

    2. [2]

      [2] Horvath I T. Green Chem, 2008, 10: 1024

    3. [3]

      [3] Moumouzias G, Ritzoulis G, Siapkas D, Terzidis D. J Power Sources, 2003, 122: 57

    4. [4]

      [4] Herstedt M, Stjerndahl M, Gustafsson T, Edstrom K. Electrochem Commun, 2003, 5: 467

    5. [5]

      [5] Muskat I E, Strain F. US Patent 2379250. 1945

    6. [6]

      [6] Mo W L, Li G X, Zhu Y Q, Xiong H, Mei F M. Chin J Catal (莫婉玲, 李光兴, 朱永强, 熊辉, 梅付名. 催化学报), 2003, 24: 3

    7. [7]

      [7] Zielinska-Nadolska I, Warmuzinski K, Richter J. Catal Today, 2006, 114: 226

    8. [8]

      [8] Zhang Z, Ma X B, Zhang J, He F, Wang S P. J Mol Catal A, 2005, 227: 141

    9. [9]

      [9] Gao X C, Ma X B, Wang S P, Li Z H. Chin J Catal (高晓晨, 马新宾, 王胜平, 李振花. 催化学报), 2007, 28: 720

    10. [10]

      [10] Ryu J Y. US Patent 5902894. 1999

    11. [11]

      [11] Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K. Catal Lett, 1999, 58: 225

    12. [12]

      [12] Dunn B C, Guenneau C, Hilton S A, Pahnke J, Eyring E M, Dworzanski J, Meuzelaar H L C, Hu J Z, Solum M S, Pugmire R J. Energy Fuels, 2002, 16: 177

    13. [13]

      [13] Briggs D N, Lawrence K H, Bell A T. Appl Catal A, 2009, 366: 71

    14. [14]

      [14] Briggs D N, Bong G, Leong E, Oei K, Lestari G, Bell A T. J Catal, 2010, 276: 215

    15. [15]

      [15] Zhang P B, Huang S Y, Wang S P, Ma X B. Chem Eng J, 2011, 172: 526

    16. [16]

      [16] Zhang P B, Ma X B. Chem Eng J, 2010, 163: 93

    17. [17]

      [17] Huang S Y, Wang Y, Wang Z Z, Yan B, Wang S P, Gong J L, Ma X B. Appl Catal A, 2012, 417-418: 236

    18. [18]

      [18] Zhang P B, Zhang Z, Wang S P, Ma X B. Catal Commun, 2007, 8: 21

    19. [19]

      [19] Zheng H Y, Ren J, Zhou Y, Niu Y Y, Li Z. J Fuel Chem Technol, 2011, 39: 282

    20. [20]

      [20] Richter M, Fait M J G, Eckelt R, Schreier E, Schneider M, Pohl M M, Fricke R. Appl Catal B, 2007, 73: 269

    21. [21]

      [21] Huang S Y, Chen P Z, Yan B, Wang S P, Shen Y L, Ma X B. Ind Eng Chem Res, 2013, 52: 6349

    22. [22]

      [22] Huang S Y, Zhang J J, Wang Y, Chen P Z, Wang S P, Ma X B. Ind Eng Chem Res, 2014, 53: 5838

    23. [23]

      [23] Zhang Y H, Drake I J, Briggs D N, Bell A T. J Catal, 2006, 244: 219

    24. [24]

      [24] Li Z, Wen C M, Zheng H Y, Xie K C. Chem J Chin Univ, 2010, 31: 145

    25. [25]

      [25] Ding X S, Dong X M, Kuang D T, Wang S F, Zhao X Q, Wang Y J. Chem Eng J, 2014, 240: 221

    26. [26]

      [26] Zhang R G, Liu H Y, Zheng H Y, Ling L X, Li Z, Wang B J. Appl Surf Sci, 2011, 257: 4787

    27. [27]

      [27] Zhang R G, Zheng H Y, Wang B J, Li Z. Chem J Chin Univ, 2010, 31: 1246

    28. [28]

      [28] King S T. Catal Today, 1997, 33: 173

    29. [29]

      [29] Yan B, Huang S Y, Wang S P, Ma X B. ChemCatChem, 2014, 6: 2671

    30. [30]

      [30] Chen Z W, Jiao Z, Pan D Y, Li Z, Wu M H, Shek C H, Wu C M L, Lai J K L. Chem Rev, 2012, 112: 3833

    31. [31]

      [31] Lignier P, Bellabarba R, Tooze R P. Chem Soc Rev, 2012, 41: 1708

    32. [32]

      [32] Park J C, Kim J, Kwon H, Song H. Adv Mater, 2009, 21: 803

    33. [33]

      [33] Chanda K, Rej S, Huang M H. Chem Eur J, 2013, 19: 16036

    34. [34]

      [34] Li L L, Nan C Y, Peng Q, Li Y D. Chem Eur J, 2012, 18: 10491

    35. [35]

      [35] Zhong Z Y, Ng V, Luo J Z, Teh S P, Teo J, Gedanken A. Langmuir, 2007, 23: 5971

    36. [36]

      [36] Neupane M P, Kim Y K, Park I S, Kim K A, Lee M H, Bae T S. Surf Interface Anal, 2009, 41: 259

    37. [37]

      [37] Cao M H, Hu C W, Wang Y H, Guo Y H, Guo C X, Wang E B. Chem Commun, 2003: 1884

    38. [38]

      [38] Zhang Z, Ma X B, Zhang P B, Li Y M, Wang S P. J Mol Catal A, 2007, 266: 202

    39. [39]

      [39] Zheng X B, Bell A T. J Phys Chem C, 2008, 112: 5043

    40. [40]

      [40] Engeldinger J, Domke C, Richter M, Bentrup U. Appl Catal A, 2010, 382: 303

    41. [41]

      [41] Radi A, Pradhan D, Sohn Y, Leung K T. ACS Nano, 2010, 4: 1553

    42. [42]

      [42] Ghodselahi T, Vesaghi M A, Shafiekhani A, Baghizadeh A, Lameii M. Appl Surf Sci, 2008, 255: 2730

  • 加载中
    1. [1]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    2. [2]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    3. [3]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    17. [17]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    18. [18]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    19. [19]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(0)
  • Abstract views(284)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return