Citation: Ilkeun Lee, Ji Bong Joo, Mohammadreza Shokouhimehr. Graphene derivatives supported nanocatalysts for oxygen reduction reaction[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1799-1810. doi: 10.1016/S1872-2067(15)60971-8 shu

Graphene derivatives supported nanocatalysts for oxygen reduction reaction

  • Corresponding author: Ilkeun Lee,  Ji Bong Joo,  Mohammadreza Shokouhimehr, 
  • Received Date: 30 June 2015
    Available Online: 9 September 2015

  • Very recent progress on the graphene derivatives supported variable nanocatalysts for oxygen reduction reaction (ORR) in fuel cell is reviewed. First, common electrochemical techniques to characterize graphene-based electrocatalysts are mentioned. Second, recent updates on graphene-derived electrocatalysts are introduced. In this part, both electrochemical activity and stability of Pt catalysts can be improved when they are supported by reduced graphene oxide (RGO). Other noble-metal catalysts including Pd, Au, and Ag showing comparable performance have been investigated. The stability of Pd catalyst is enhanced by RGO or few-layered graphene support. Synthetic approaches for Au or Ag catalysts supported on graphene oxide are discussed. In addition, non-noble transition metals in N4-chelate complexes can reduce oxygen electrochemically. Fe and Co are cheap alternative catalysts for ORR. In most cases, the stability and tolerance issues are overcome well, but their overall performances don't seem to surpass Pt/C catalyst yet.
  • 加载中
    1. [1]

      [1] Zhu C Z, Dong S J. Nanoscale, 2013, 5: 1753

    2. [2]

      [2] Guo S J, Zhang S, Sun S H. Angew Chem Int Ed, 2013, 52: 8526

    3. [3]

      [3] Wang Y J, Wilkinson D P, Zhang J J. Chem Rev, 2011, 111: 7625

    4. [4]

      [4] Song C J, Zhang J J. In: Zhang J Ed. PEM Fuel Cell Electrocatalysts and Catalyst Layers. London: Springer, 2008. 89

    5. [5]

      [5] Liu Y, Wu Y Y, Lü G J, Pu T, He X Q, Cui L L. Electrochim Acta, 2013, 112: 269

    6. [6]

      [6] Liu J F, Takeshi D, Orejon D, Sasaki K, Lyth S M. J Electrochem Soc, 2014, 161: F544

    7. [7]

      [7] Monteverde Videla A H A, Ban S, Specchia S, Zhang L, Zhang J J. Carbon, 2014, 76: 386

    8. [8]

      [8] Jin S, Chen M, Dong H F, He B Y, Lu H T, Su L, Dai W H, Zhang Q C, Zhang X J. J Power Sources, 2015, 274: 1173

    9. [9]

      [9] Ghanbarlou H, Rowshanzamir S, Kazeminasab B, Parnian M J. J Power Sources, 2015, 273: 981

    10. [10]

      [10] Knights S D, Colbow K M, St-Pierre J, Wilkinson D P. J Power Sources, 2004, 127: 127

    11. [11]

      [11] Yuan X Z, Wang H J. In: Zhang J Ed. PEM Fuel Cell Electrocatalysts and Catalyst Layers. London: Springer, 2008. 1

    12. [12]

      [12] He D P, Cheng K, Li H G, Peng T, Xu F, Mu S C, Pan M. Langmuir, 2012, 28: 3979

    13. [13]

      [13] Li Y J, Li Y J, Zhu E B, McLouth T, Chiu C Y, Huang X Q, Huang Y. J Am Chem Soc, 2012, 134: 12326

    14. [14]

      [14] He D P, Cheng K, Peng T, Sun X L, Pan M, Mu S C. J Mater Chem, 2012, 22: 21298

    15. [15]

      [15] Yu X Q, Wang H, Guo L P, Wang L. Chem Asian J, 2014, 9: 3221

    16. [16]

      [16] Seo M H, Choi S M, Kim H J, Kim W B. Electrochem Commun, 2011, 13: 182

    17. [17]

      [17] Kong X K, Chen Q W, Lun Z Y. ChemPhysChem, 2014, 15: 344

    18. [18]

      [18] Huang Y X, Xie J F, Zhang X, Xiong L, Yu H Q. ACS Appl Mater Interf, 2014, 6: 15795

    19. [19]

      [19] Truong-Phuoc L, Pham-Huu C, Da Costa V, Janowska I. Chem Commun, 2014, 50: 14433

    20. [20]

      [20] Janowska I, Vigneron F, Begin D, Ersen O, Bernhardt P, Romero T, Ledoux M J, Pham-Huu C. Carbon, 2012, 50: 3106

    21. [21]

      [21] Haruta M, Yamada N, Kobayashi T, Iijima S. J Catal, 1989, 115: 301

    22. [22]

      [22] Haruta M. Catal Today, 1997, 36: 153

    23. [23]

      [23] Lee I, Joo J B, Yin Y, Zaera F. Angew Chem Int Ed, 2011, 50: 10208

    24. [24]

      [24] Wang S N, Zhang M C, Zhang W Q. ACS Catal, 2011, 1: 207

    25. [25]

      [25] Wu X F, Song H Y, Yoon J M, Yu Y T, Chen Y F. Langmuir, 2009, 25: 6438

    26. [26]

      [26] Geim A K, Novoselov K S. Nat Mater, 2007, 6: 183

    27. [27]

      [27] Allen M J, Tung C V, Kaner B R. Chem Rev, 2010, 110: 132

    28. [28]

      [28] Xu S J, Wu P Y. J Mater Chem A, 2014, 2: 13682

    29. [29]

      [29] Lightcap I V, Kosel T H, Kamat P V. Nano Lett, 2010, 10: 577

    30. [30]

      [30] Wu D Q, Zhang F, Liu P, Feng X L. Chem Eur J, 2011, 17: 10804

    31. [31]

      [31] Xu S J, Yong L,Wu P Y. ACS Appl Mater Interfaces, 2013, 5: 654

    32. [32]

      [32] Dhavale V M, Gaikwad S S, Kurungot S. J Mater Chem A, 2014, 2: 1383

    33. [33]

      [33] Zhang P P, Huang Y, Lu X, Zhang S Y, Li J F, Wei G, Su Z Q. Langmuir, 2014, 30: 8980

    34. [34]

      [34] Wang F B, Wang J, Shao L, Zhao Y, Xia X H. Electrochem Commun, 2014, 38: 82

    35. [35]

      [35] Govindhan M, Chen A. J Power Sources, 2015, 274: 928

    36. [36]

      [36] Li X R, Li X L, Xu M C, Xu J J, Chen H Y. J Mater Chem A, 2014, 2: 1697

    37. [37]

      [37] Kim S S, Kim Y R, Chung T D, Sohn B H. Adv Funct Mater, 2014, 24: 2764

    38. [38]

      [38] Liu F, Choi J Y, Seo T S. Chem Commun, 2010, 46: 2844

    39. [39]

      [39] Liu J B, Li Y L, Li Y M, Li J H, Deng Z X. J Mater Chem, 2010, 20: 900

    40. [40]

      [40] Imura Y, Maezawa A, Morita C, Kawai T. Langmuir, 2012, 28: 14998

    41. [41]

      [41] Yin H J, Tang H J, Wang D, Gao Y, Tang Z Y. ACS Nano, 2012, 6: 8288

    42. [42]

      [42] Ji X H, Song X N, Li J, Bai Y B, Yang W S, Peng X G. J Am Chem Soc, 2007, 129: 13939

    43. [43]

      [43] Huo Z Y, Tsung C K, Huang W Y, Zhang X F, Yang P D. Nano Lett, 2008, 8: 2041

    44. [44]

      [44] Choi H C, Shim M, Bangsaruntip S, Dai H J. J Am Chem Soc, 2002, 124: 9058

    45. [45]

      [45] Yuan L Z, Jiang L H, Liu J, Xia Z X, Wang S L, Sun G Q. Electrochim Acta, 2014, 135: 168

    46. [46]

      [46] Liu R J, Yu X L, Zhang G J, Zhang S J, Cao H B, Dolbecq A, Mialane P, Keita B, Zhi L J. J Mater Chem A, 2013, 1: 11961

    47. [47]

      [47] Davis D J, Raji A R O, Lambert T N, Vigil J A, Li L, Nan K, Tour J M. Electroanalysis, 2014, 26: 164

    48. [48]

      [48] Kumar S, Selvaraj C, Scanlon L G, Munichandraiah N. Phys Chem Chem Phys, 2014, 16: 22830

    49. [49]

      [49] Lim E J, Choi S M, Seo M H, Kim Y, Lee S, Kim W B. Electrochem Commun, 2013, 28: 100

    50. [50]

      [50] Genies L, Faure R, Durand R. Electrochim Acta, 1998, 44: 1317

    51. [51]

      [51] Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H. Adv Funct Mater, 2009, 19: 1987

    52. [52]

      [52] Jasinski R J. Nature, 1964, 201: 1212

    53. [53]

      [53] Jiang Y Y, Lu Y Z, Lü X Y, Han D X, Zhang Q X, Niu L, Chen W. ACS Catal, 2013, 3: 1263

    54. [54]

      [54] Zhao X N, Zhang P P, Chen Y T, Su Z Q, Wei G. Nanoscale, 2015, 7: 5080

    55. [55]

      [55] Tiwari J N, Kemp K C, Nath K, Tiwari R N, Nam H G, Kim K S. ACS Nano, 2013, 7: 9223

    56. [56]

      [56] Chen H S, Liang Y T, Chen T Y, Tseng Y C, Liu C W, Chung S R, Hsieh C T, Lee C E, Wang K W. Chem Commun, 2014, 50: 11165

    57. [57]

      [57] Tiido K, Alexeyeva N, Couillard M, Bock C, MacDougall B R, Tammeveski K. Electrochim Acta, 2013, 107: 509

    58. [58]

      [58] Tan Y M, Xu C F, Chen G X, Zheng N F, Xie Q J. Energy Environ Sci, 2012, 5: 6923

    59. [59]

      [59] Chou C C, Liu C H, Chen B H. Energy, 2014, 70: 231

    60. [60]

      [60] Tiwari J N, Nath K, Kumar S, Tiwari R N, Kemp C, Le N H, Youn D H, Lee J S, Kim K S. Nat Commun, 2013, 4: 3221

    61. [61]

      [61] Nam K W, Song J, Oh K H, Choo M J, Park H A, Park J K, Choi J W. J Solid State Electrochem, 2013, 17: 767

    62. [62]

      [62] Li Y J, Li Y J, Zhu E B, McLouth T, Chiu C Y, Huang X Q, Huang Y. J Am Chem Soc, 2012, 134: 12326

    63. [63]

      [63] Carrera-Cerritos R, Baglio V, Aricò A S, Ledesma-García J, Sgroi M F, Pullini D, Pruna A J, Mataix D B, Fuentes-Ramírez R, Arriaga L G. Appl Catal B, 2014, 144: 554

    64. [64]

      [64] Kakaei K, Gharibi H. Energy, 2014, 65: 166

    65. [65]

      [65] Zhang P D, Zhang X Y, Zhang S Y, Lu X, Li Q, Su Z Q, Wei G. J Mater Chem B, 2013, 1: 6525

    66. [66]

      [66] Yu D B, Yao J F, Qiu L, Wu Y Z, Li L X, Feng Y, Liu Q, Li D, Wang H T. RSC Adv, 2013, 3: 11552

    67. [67]

      [67] Yin H, Zhang C Z, Liu F, Hou Y L. Adv Funct Mater, 2014, 24: 2930

    68. [68]

      [68] Gao X, Wang J F, Ma Z, Ye J S. Electrochim Acta, 2014, 130: 543

    69. [69]

      [69] He C Y, Zhang J J, Shen P K. J Mater Chem A, 2014, 2: 3231

    70. [70]

      [70] Lin L, Li M, Jang L Q, Li Y F, Liu D J, He X Q, Cui L L. J Power Sources, 2014, 268: 269

    71. [71]

      [71] Li M, Bo X J, Zhang Y F, Han C, Guo L P. J Power Sources, 2014, 264: 114

    72. [72]

      [72] Lim C S, Ambrosi, A, Sofer Z, Pumera M. Nanoscale, 2014, 6: 7391

    73. [73]

      [73] Taniguchi T, Tateishi H, Miyamoto S, Hatakeyama K, Ogata C, Funatsu A, Hayami S, Makinose Y, Matsushita N, Koinuma M, Matsumoto Y. Part Part Syst Charact, 2013, 30: 1063

    74. [74]

      [74] Zheng B, Wang J, Wang F B, Xia X H. J Mater Chem A, 2014, 2: 9079

    75. [75]

      [75] Jiang Y Y, Lu Y Z, Wang X D, Bao Y, Chen W, Niu L. Nanoscale, 2014, 6: 15066

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

Metrics
  • PDF Downloads(0)
  • Abstract views(406)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return