Citation:
Ilkeun Lee, Ji Bong Joo, Mohammadreza Shokouhimehr. Graphene derivatives supported nanocatalysts for oxygen reduction reaction[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1799-1810.
doi:
10.1016/S1872-2067(15)60971-8
-
Very recent progress on the graphene derivatives supported variable nanocatalysts for oxygen reduction reaction (ORR) in fuel cell is reviewed. First, common electrochemical techniques to characterize graphene-based electrocatalysts are mentioned. Second, recent updates on graphene-derived electrocatalysts are introduced. In this part, both electrochemical activity and stability of Pt catalysts can be improved when they are supported by reduced graphene oxide (RGO). Other noble-metal catalysts including Pd, Au, and Ag showing comparable performance have been investigated. The stability of Pd catalyst is enhanced by RGO or few-layered graphene support. Synthetic approaches for Au or Ag catalysts supported on graphene oxide are discussed. In addition, non-noble transition metals in N4-chelate complexes can reduce oxygen electrochemically. Fe and Co are cheap alternative catalysts for ORR. In most cases, the stability and tolerance issues are overcome well, but their overall performances don't seem to surpass Pt/C catalyst yet.
-
Keywords:
- Graphene,
- Oxygen reduction reaction,
- Electrocatalyst,
- Nanocatalyst
-
-
-
[1]
[1] Zhu C Z, Dong S J. Nanoscale, 2013, 5: 1753
-
[2]
[2] Guo S J, Zhang S, Sun S H. Angew Chem Int Ed, 2013, 52: 8526
-
[3]
[3] Wang Y J, Wilkinson D P, Zhang J J. Chem Rev, 2011, 111: 7625
-
[4]
[4] Song C J, Zhang J J. In: Zhang J Ed. PEM Fuel Cell Electrocatalysts and Catalyst Layers. London: Springer, 2008. 89
-
[5]
[5] Liu Y, Wu Y Y, Lü G J, Pu T, He X Q, Cui L L. Electrochim Acta, 2013, 112: 269
-
[6]
[6] Liu J F, Takeshi D, Orejon D, Sasaki K, Lyth S M. J Electrochem Soc, 2014, 161: F544
-
[7]
[7] Monteverde Videla A H A, Ban S, Specchia S, Zhang L, Zhang J J. Carbon, 2014, 76: 386
-
[8]
[8] Jin S, Chen M, Dong H F, He B Y, Lu H T, Su L, Dai W H, Zhang Q C, Zhang X J. J Power Sources, 2015, 274: 1173
-
[9]
[9] Ghanbarlou H, Rowshanzamir S, Kazeminasab B, Parnian M J. J Power Sources, 2015, 273: 981
-
[10]
[10] Knights S D, Colbow K M, St-Pierre J, Wilkinson D P. J Power Sources, 2004, 127: 127
-
[11]
[11] Yuan X Z, Wang H J. In: Zhang J Ed. PEM Fuel Cell Electrocatalysts and Catalyst Layers. London: Springer, 2008. 1
-
[12]
[12] He D P, Cheng K, Li H G, Peng T, Xu F, Mu S C, Pan M. Langmuir, 2012, 28: 3979
-
[13]
[13] Li Y J, Li Y J, Zhu E B, McLouth T, Chiu C Y, Huang X Q, Huang Y. J Am Chem Soc, 2012, 134: 12326
-
[14]
[14] He D P, Cheng K, Peng T, Sun X L, Pan M, Mu S C. J Mater Chem, 2012, 22: 21298
-
[15]
[15] Yu X Q, Wang H, Guo L P, Wang L. Chem Asian J, 2014, 9: 3221
-
[16]
[16] Seo M H, Choi S M, Kim H J, Kim W B. Electrochem Commun, 2011, 13: 182
-
[17]
[17] Kong X K, Chen Q W, Lun Z Y. ChemPhysChem, 2014, 15: 344
-
[18]
[18] Huang Y X, Xie J F, Zhang X, Xiong L, Yu H Q. ACS Appl Mater Interf, 2014, 6: 15795
-
[19]
[19] Truong-Phuoc L, Pham-Huu C, Da Costa V, Janowska I. Chem Commun, 2014, 50: 14433
-
[20]
[20] Janowska I, Vigneron F, Begin D, Ersen O, Bernhardt P, Romero T, Ledoux M J, Pham-Huu C. Carbon, 2012, 50: 3106
-
[21]
[21] Haruta M, Yamada N, Kobayashi T, Iijima S. J Catal, 1989, 115: 301
-
[22]
[22] Haruta M. Catal Today, 1997, 36: 153
-
[23]
[23] Lee I, Joo J B, Yin Y, Zaera F. Angew Chem Int Ed, 2011, 50: 10208
-
[24]
[24] Wang S N, Zhang M C, Zhang W Q. ACS Catal, 2011, 1: 207
-
[25]
[25] Wu X F, Song H Y, Yoon J M, Yu Y T, Chen Y F. Langmuir, 2009, 25: 6438
-
[26]
[26] Geim A K, Novoselov K S. Nat Mater, 2007, 6: 183
-
[27]
[27] Allen M J, Tung C V, Kaner B R. Chem Rev, 2010, 110: 132
-
[28]
[28] Xu S J, Wu P Y. J Mater Chem A, 2014, 2: 13682
-
[29]
[29] Lightcap I V, Kosel T H, Kamat P V. Nano Lett, 2010, 10: 577
-
[30]
[30] Wu D Q, Zhang F, Liu P, Feng X L. Chem Eur J, 2011, 17: 10804
-
[31]
[31] Xu S J, Yong L,Wu P Y. ACS Appl Mater Interfaces, 2013, 5: 654
-
[32]
[32] Dhavale V M, Gaikwad S S, Kurungot S. J Mater Chem A, 2014, 2: 1383
-
[33]
[33] Zhang P P, Huang Y, Lu X, Zhang S Y, Li J F, Wei G, Su Z Q. Langmuir, 2014, 30: 8980
-
[34]
[34] Wang F B, Wang J, Shao L, Zhao Y, Xia X H. Electrochem Commun, 2014, 38: 82
-
[35]
[35] Govindhan M, Chen A. J Power Sources, 2015, 274: 928
-
[36]
[36] Li X R, Li X L, Xu M C, Xu J J, Chen H Y. J Mater Chem A, 2014, 2: 1697
-
[37]
[37] Kim S S, Kim Y R, Chung T D, Sohn B H. Adv Funct Mater, 2014, 24: 2764
-
[38]
[38] Liu F, Choi J Y, Seo T S. Chem Commun, 2010, 46: 2844
-
[39]
[39] Liu J B, Li Y L, Li Y M, Li J H, Deng Z X. J Mater Chem, 2010, 20: 900
-
[40]
[40] Imura Y, Maezawa A, Morita C, Kawai T. Langmuir, 2012, 28: 14998
-
[41]
[41] Yin H J, Tang H J, Wang D, Gao Y, Tang Z Y. ACS Nano, 2012, 6: 8288
-
[42]
[42] Ji X H, Song X N, Li J, Bai Y B, Yang W S, Peng X G. J Am Chem Soc, 2007, 129: 13939
-
[43]
[43] Huo Z Y, Tsung C K, Huang W Y, Zhang X F, Yang P D. Nano Lett, 2008, 8: 2041
-
[44]
[44] Choi H C, Shim M, Bangsaruntip S, Dai H J. J Am Chem Soc, 2002, 124: 9058
-
[45]
[45] Yuan L Z, Jiang L H, Liu J, Xia Z X, Wang S L, Sun G Q. Electrochim Acta, 2014, 135: 168
-
[46]
[46] Liu R J, Yu X L, Zhang G J, Zhang S J, Cao H B, Dolbecq A, Mialane P, Keita B, Zhi L J. J Mater Chem A, 2013, 1: 11961
-
[47]
[47] Davis D J, Raji A R O, Lambert T N, Vigil J A, Li L, Nan K, Tour J M. Electroanalysis, 2014, 26: 164
-
[48]
[48] Kumar S, Selvaraj C, Scanlon L G, Munichandraiah N. Phys Chem Chem Phys, 2014, 16: 22830
-
[49]
[49] Lim E J, Choi S M, Seo M H, Kim Y, Lee S, Kim W B. Electrochem Commun, 2013, 28: 100
-
[50]
[50] Genies L, Faure R, Durand R. Electrochim Acta, 1998, 44: 1317
-
[51]
[51] Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H. Adv Funct Mater, 2009, 19: 1987
-
[52]
[52] Jasinski R J. Nature, 1964, 201: 1212
-
[53]
[53] Jiang Y Y, Lu Y Z, Lü X Y, Han D X, Zhang Q X, Niu L, Chen W. ACS Catal, 2013, 3: 1263
-
[54]
[54] Zhao X N, Zhang P P, Chen Y T, Su Z Q, Wei G. Nanoscale, 2015, 7: 5080
-
[55]
[55] Tiwari J N, Kemp K C, Nath K, Tiwari R N, Nam H G, Kim K S. ACS Nano, 2013, 7: 9223
-
[56]
[56] Chen H S, Liang Y T, Chen T Y, Tseng Y C, Liu C W, Chung S R, Hsieh C T, Lee C E, Wang K W. Chem Commun, 2014, 50: 11165
-
[57]
[57] Tiido K, Alexeyeva N, Couillard M, Bock C, MacDougall B R, Tammeveski K. Electrochim Acta, 2013, 107: 509
-
[58]
[58] Tan Y M, Xu C F, Chen G X, Zheng N F, Xie Q J. Energy Environ Sci, 2012, 5: 6923
-
[59]
[59] Chou C C, Liu C H, Chen B H. Energy, 2014, 70: 231
-
[60]
[60] Tiwari J N, Nath K, Kumar S, Tiwari R N, Kemp C, Le N H, Youn D H, Lee J S, Kim K S. Nat Commun, 2013, 4: 3221
-
[61]
[61] Nam K W, Song J, Oh K H, Choo M J, Park H A, Park J K, Choi J W. J Solid State Electrochem, 2013, 17: 767
-
[62]
[62] Li Y J, Li Y J, Zhu E B, McLouth T, Chiu C Y, Huang X Q, Huang Y. J Am Chem Soc, 2012, 134: 12326
-
[63]
[63] Carrera-Cerritos R, Baglio V, Aricò A S, Ledesma-García J, Sgroi M F, Pullini D, Pruna A J, Mataix D B, Fuentes-Ramírez R, Arriaga L G. Appl Catal B, 2014, 144: 554
-
[64]
[64] Kakaei K, Gharibi H. Energy, 2014, 65: 166
-
[65]
[65] Zhang P D, Zhang X Y, Zhang S Y, Lu X, Li Q, Su Z Q, Wei G. J Mater Chem B, 2013, 1: 6525
-
[66]
[66] Yu D B, Yao J F, Qiu L, Wu Y Z, Li L X, Feng Y, Liu Q, Li D, Wang H T. RSC Adv, 2013, 3: 11552
-
[67]
[67] Yin H, Zhang C Z, Liu F, Hou Y L. Adv Funct Mater, 2014, 24: 2930
-
[68]
[68] Gao X, Wang J F, Ma Z, Ye J S. Electrochim Acta, 2014, 130: 543
-
[69]
[69] He C Y, Zhang J J, Shen P K. J Mater Chem A, 2014, 2: 3231
-
[70]
[70] Lin L, Li M, Jang L Q, Li Y F, Liu D J, He X Q, Cui L L. J Power Sources, 2014, 268: 269
-
[71]
[71] Li M, Bo X J, Zhang Y F, Han C, Guo L P. J Power Sources, 2014, 264: 114
-
[72]
[72] Lim C S, Ambrosi, A, Sofer Z, Pumera M. Nanoscale, 2014, 6: 7391
-
[73]
[73] Taniguchi T, Tateishi H, Miyamoto S, Hatakeyama K, Ogata C, Funatsu A, Hayami S, Makinose Y, Matsushita N, Koinuma M, Matsumoto Y. Part Part Syst Charact, 2013, 30: 1063
-
[74]
[74] Zheng B, Wang J, Wang F B, Xia X H. J Mater Chem A, 2014, 2: 9079
-
[75]
[75] Jiang Y Y, Lu Y Z, Wang X D, Bao Y, Chen W, Niu L. Nanoscale, 2014, 6: 15066
-
[1]
-
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[3]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[4]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[5]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[6]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[7]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[8]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[9]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[10]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[11]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[12]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[13]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[14]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[15]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[16]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[17]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[18]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[19]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[20]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(406)
- HTML views(21)