Citation: L. Elsellami, N. Hafidhi, F. Dappozze, A. Houas, C. Guillard. Kinetics and mechanism of thymine degradation by TiO2 photocatalysis[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1818-1824. doi: 10.1016/S1872-2067(15)60967-6 shu

Kinetics and mechanism of thymine degradation by TiO2 photocatalysis

  • Corresponding author: L. Elsellami, 
  • Received Date: 8 August 2015
    Available Online: 24 August 2015

  • The advanced oxidation processes were examined toward the degradation of thymine (C5H6N2O2), a type of nucleic acid from the pyrimidine family. As observed, the photodegradation of thymine over TiO2 photocatalyst was rapid and significant in aqueous solution under UV irradiation. Different parameters were studied, including the adsorption of thymine onto TiO2 photocatalyst, the kinetics of degradation, and the effect of pH on the photocatalytic properties of thymine degradation. Additionally, the mineralization of the products obtained upon thymine photodegradation was studied. The disappearance and mineralization rates of thymine during the photocatalytic process were also compared and discussed. The mineralization of nitrogen was also investigated, and the identification of the intermediate products was established. Finally, electronic density calculations were used to propose possible chemical pathways for the photodegradation of thymine over TiO2 photocatalyst under UV irradiation.
  • 加载中
    1. [1]

      [1] Cadet J, Douki T, Gasparutto D, Ravanat J L. Mutat Res, 2003, 531: 5

    2. [2]

      [2] Perrier S, Hau J, Gasparutto D, Cadet J, Favier A, Ravanat J L. J Am Chem Soc, 2006, 128: 5703

    3. [3]

      [3] Steenkeste K, Guiot E, Tfibel F, Pernot P, Mérola F, Georges P, Fontaine-Aupart M P. Chem Phys, 2002, 275: 93

    4. [4]

      [4] Steenkeste K, Enescu M, Tfibel F, Perrée-Fauvet M, Fontaine- Aupart M P. J Phys Chem B, 2004, 108: 12215

    5. [5]

      [5] Lee H S, Hur T, Kim S, Kim J H, Lee H I. Catal Today, 2003, 84: 173

    6. [6]

      [6] Liu J Q, de la Garza L, Zhang L G, Dimitrijevic N M, Zuo X B, Tiede D M, Rajh T. Chem Phys, 2007, 339: 154

    7. [7]

      [7] Horikoshi S, Hidaka H. J Photochem Photobiol A, 2001, 141: 201

    8. [8]

      [8] Dhananjeyan M R, Kandavelu V, Renganathan R. J Mol Catal A, 2000, 151: 217

    9. [9]

      [9] Vaz J L L, Boussaoud A, Ichouet Y A, Petit-Ramel M. Analusis, 1998, 26: 83

    10. [10]

      [10] Plantard G, Janin T, Goetz V, Brosillon S. Appl Catal B, 2012, 115-116: 38

    11. [11]

      [11] Hou H B, Wang X X, Chen C C, Johnson D M, Fang Y F, Huang Y P. Catal Commun, 2014, 48: 65

    12. [12]

      [12] Jaussaud C, Païssé O, Faure R. J Photochem Photobiol A, 2000, 130: 157

    13. [13]

      [13] Horikoshi S, Serpone N, Yoshizawa S, Knowland J, Hidaka H. J Photochem Photobiol A, 1999, 120: 63

    14. [14]

      [14] Li G Y, Liu X L, An T C, Yang H, Zhang S Q, Zhao H J. Catal Today, 2015, 242: 363

    15. [15]

      [15] Singh H K, Saquib M, Haque M M, Muneer M. J Hazard Mater, 2007, 142: 425

    16. [16]

      [16] El Madani M, Guillard C, Perol N, Chovelon J M, El Azzouzi M, Zrineh A, Herrmann J M. Appl Catal B, 2006, 65: 70

    17. [17]

      [17] Boehm H P, Herrmann M. Z Anorg Allg Chem, 1967, 352: 156

    18. [18]

      [18] Elsellami L, Vocanson F, Dappozze F, Baudot R, Febvay G, Rey M, Houas A, Guillard C. Appl Catal B, 2010, 94: 192

    19. [19]

      [19] Elsellami L, Vocanson F, Dappozze F, Puzenat E, Païsse O, Houas A, Guillard C. Appl Catal A, 2010, 380: 142

    20. [20]

      [20] Tran T H, Nosaka A Y, Nosaka Y. J Phys Chem B, 2006, 110: 25525

    21. [21]

      [21] Helali S, Dappozze F, Horikoshi S, Bui T H, Perol N, Guillard C. J Photochem Photobiol A, 2013, 255: 50

    22. [22]

      [22] Turki A, Guillard C, Dappozze F, Berhault G, Ksibi Z, Kochkar H. J Photochem Photobiol A, 2014, 279: 8

    23. [23]

      [23] Marci G, Sclafani A, Augugliaro V, Palmisano L, Schiavello M. J Photochem Photobiol A, 1995, 89: 69

    24. [24]

      [24] Chiou C H, Wu C Y, Juang R S. Chem Eng J, 2008, 139: 322

    25. [25]

      [25] Valencia S, Cataño F, Rios L, Restrepo G, Marín J. Appl Catal B, 2011, 104: 300

    26. [26]

      [26] Pelizzetti E, Calza P, Mariella G, Maurino V, Minero C, Hidaka H. Chem Commun, 2004: 1504

    27. [27]

      [27] Dhananjeyan M R, Annapoorani R, Renganathan R. J Photochem Photobiol A, 1997, 109: 147

    28. [28]

      [28] Ollis D F, Pelizzetti E, Serpone N. Environ Sci Technol, 1991, 25: 1522

    29. [29]

      [29] Hu C, Yu J C, Hao Z, Wong P K. Appl Catal B, 2003, 46: 35

  • 加载中
    1. [1]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    8. [8]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    11. [11]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(1)
  • Abstract views(312)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return