Citation: H. N. Hareesh, K. U. Minchitha, N. Nagaraju, N. Kathyayini. Catalytic role of Cu(I) species in Cu2O/CuI supported on MWCNTs in the oxidative amidation of aryl aldehydes with 2-aminopyridines[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1825-1836. doi: 10.1016/S1872-2067(15)60964-0 shu

Catalytic role of Cu(I) species in Cu2O/CuI supported on MWCNTs in the oxidative amidation of aryl aldehydes with 2-aminopyridines

  • Corresponding author: N. Kathyayini, 
  • Received Date: 23 June 2015
    Available Online: 12 August 2015

  • Cu2O and CuI were supported on multiwalled carbon nanotubes (MWCNTs) using a wet impregnation method, and the resulting materials were fully characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, transmission electron microscopy, and temperature-programmed desorption with ammonia analysis. The results of these experiments revealed that Cu2O and CuI were deposited on the MWCNTs in the cubic and γ phases, respectively. These results also showed that the Cu-containing MWCNTs exhibited weak to strong electron-accepting (Lewis acidic) properties. The catalytic activities of these materials were studied for the synthesis of biologically significant N-(pyridin-2-yl)benzamides via the oxidative amidation of aryl aldehydes with 2-aminopyridines. The yields of the products were in the range 50%-95% with 100% selectivity. Notably, the CuI/MWCNT catalyst was much more effective than the Cu2O/MWCNT catalyst with respect to the isolated yield of the product, although the latter of these two catalysts exhibited much better recyclability. A preferential interaction was observed between the polar nature of the acid-activated MWCNTs and the ionic Cu2O compared with covalent CuI. The differences in these interactions had a significant impact on the rate of the nucleophilic attack of the amino group of 2-aminopyridine substrate on the carbonyl group of the aryl aldehyde.
  • 加载中
    1. [1]

      [1] Dhakshinamoorthy A, Opanasenko M, Cejka J, Garcia H. Catal Sci Technol, 2013, 3: 2509

    2. [2]

      [2] Climent M J, Corma A, Iborra S. Chem Rev, 2011, 111: 1072

    3. [3]

      [3] Guibal E. Progr Polym Sci, 2005, 30: 71

    4. [4]

      [4] Blaser H U. Catal Today, 2000, 60: 161

    5. [5]

      [5] Julkapli N M, Bagheri S. Int J Hydrogen Energy, 2015, 40: 948

    6. [6]

      [6] Thimmaraju N, Mohamed Shamshuddin S Z, Pratap S R, Venkatesh. J Mol Catal A, 2014, 391: 55

    7. [7]

      [7] Eatemadi A, Daraee H, Karimkhanloo H, Zarghami N, Abasi M, Kouhi M, Akbarzadeh A, Hanifehpour Y, Joo S W. Nanoscale Res Lett, 2014, 9: 393

    8. [8]

      [8] Eder D. Chem Rev, 2010, 110: 1348

    9. [9]

      [9] Oosthuizen R S, Nyamori V O. Platinum Metals Rev, 2011, 55: 154

    10. [10]

      [10] Rummeli M H, Bachmatiuk A, Borrnert F, Schaffel F, Ibrahim I, Cendrowski K, Simha-Martynkova G, Placha D, Borowiak-Palen E, Cuniberti G, Buchner B. Nanoscale Res Lett, 2011, 6: 303

    11. [11]

      [11] Solhy A, Machado B F, Beausoleil J, Kihn Y, Goncalves F, Pereira M F R, Orfao J J M, Figueiredo J L, Faria J L, Serp P. Carbon, 2008, 46: 1194

    12. [12]

      [12] Jahjah M, Kihn Y, Teuma E, Gomez M. J Mol Catal A, 2010, 332: 106

    13. [13]

      [13] Liu Z, Li Z L, Wang F, Liu J J, Ji J, Park K C, Endo M. Mater Res Bull, 2012, 47: 338

    14. [14]

      [14] Terada Y, Ieda N, Komura K, Sugi Y. Synthesis, 2008: 2318

    15. [15]

      [15] Valeur E, Bradley M. Chem Soc Rev, 2009, 38: 606

    16. [16]

      [16] Surasani R, Kalita D, Dhanunjaya Rao A V, Chandrasekhar K B. Beilstein J Org Chem, 2012, 8: 2004

    17. [17]

      [17] Kathiravan S, Ghosh S, Hogarth G, Nicholls I A. Chem Commun, 2015, 51: 4834

    18. [18]

      [18] Han C, Lee J P, Lobkovsky E, Porco J A. J Am Chem Soc, 2005, 127: 10039

    19. [19]

      [19] Surry D S, Buchwald S L. Chem Sci, 2010, 1: 13

    20. [20]

      [20] Yoo W J, Li C J. J Am Chem Soc, 2006, 128: 13064

    21. [21]

      [21] Ghosh S C, Ngiam J S Y, Seayad A M, Tuan D T, Chai C L L, Chen A. J Org Chem, 2012, 77: 8007

    22. [22]

      [22] Yang S Z, Yan H, Ren X Y, Shi X K, Li J, Wang Y L, Huang G S. Tetrahedron, 2013, 69: 6431

    23. [23]

      [23] Diwakar R, Singh R K. Ind J Chem B, 2011, 50B: 931

    24. [24]

      [24] Zimmer C, Hafner M, Zender M, Ammann D, Hartmann R W, Vock C A. Bioorg Med Chem Lett, 2011, 21: 186

    25. [25]

      [25] Martis P, Fonseca A, Mekhalif Z, Delhalle J. J Nanopart Res, 2010, 12: 439

    26. [26]

      [26] Zhang X J, Wang G F, Zhang W, Wei Y, Fang B. Biosens Bioelectron, 2009, 24: 3395

    27. [27]

      [27] Chen H L, Chiang T H, Wu M C. J Surf Eng Mater Adv Technol, 2012, 2: 278

    28. [28]

      [28] Johan M R, Kok S W, Hawari N, Aznan N A K. Int J Electrochem Sci, 2012, 7: 4942

    29. [29]

      [29] Noorizadeh H, Zeraatkish Y. Int J Nano Dimens, 2015, 6: 211

    30. [30]

      [30] Scheibe B, Boroiak-Palen E, Kalenczuk R J. Mater Charact, 2010, 61: 185

    31. [31]

      [31] Khanderi J, Contiu C, Engstler J, Hoffmann R C, Schneider J J, Drochner A, Vogel H. Nanoscale, 2011, 3: 1102

    32. [32]

      [32] Prakash T. Adv Mater Lett, 2011, 2: 131

    33. [33]

      [33] Rekha M, Hareesh H N, Kathyayini N, Nagaraju N. Curr Catal, 2014, 3: 88

    34. [34]

      [34] Patel O P S, Anand D, Maurya R K, Yadav P P. Green Chem, 2015, 17: 3728

  • 加载中
    1. [1]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    2. [2]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    3. [3]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    4. [4]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    13. [13]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    14. [14]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(3)
  • Abstract views(757)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return