Citation:
Bahaa M. Abu-Zied, Abdullah M. Asiri. The role of alkali promoters in enhancing the direct N2O decomposition reactivity over NiO catalysts[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1837-1845.
doi:
10.1016/S1872-2067(15)60963-9
-
Direct N2O decomposition has been investigated over bare NiO and a series of its alkali-promoted catalysts. These catalysts were characterized by X-ray diffractometry, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy. XPS analysis revealed that surface nickel is present in three forms: metal particles, NiO and Ni(OH)2. It is suggested that nickel(0) valent atoms are essential for the interaction with N2O molecules at the catalyst surfaces. Bare NiO exhibited a very low N2O decomposition reactivity. However, the alkali-containing catalysts exhibited a marked activity enhancement.
-
Keywords:
- N2O decomposition,
- Greenhouse gas,
- NiO,
- Alkali-promotion,
- Activity enhancement
-
-
-
[1]
[1] Pérez-Ramírez J. Appl Catal B, 2007, 70: 31
-
[2]
[2] Yuranov I, Bulushev D A, Renken A, Kiwi-Minsker L. Appl Catal A, 2007, 319: 128
-
[3]
[3] Wood B R, Reimer J A, Bell A T, Janicke M T, Ott K C. J Catal, 2004, 225: 300
-
[4]
[4] Kapteijn F, Rodriguez-Mirasol J, Moulijn J A. Appl Catal B, 1996, 9: 25
-
[5]
[5] Abu-Zied B M, Schwieger W, Unger A. Appl Catal B, 2008, 84: 277
-
[6]
[6] Abu-Zied B M, Soliman S A. Catal Lett, 2009, 132: 299
-
[7]
[7] Abu-Zied B M. Microporous Mesoporous Mater, 2011, 139: 59
-
[8]
[8] Abu-Zied B M. Chin J Catal (催化学报), 2011, 32: 264
-
[9]
[9] Abu-Zied B M, Soliman S A, Abdellah S E. Chin J Catal (催化学报), 2014, 35: 1105
-
[10]
[10] Abu-Zied B M, Soliman S A, Abdellah S E. J Ind Eng Chem, 2015, 21: 814
-
[11]
[11] Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M. Appl Catal B, 2008, 78: 242
-
[12]
[12] Stelmachowski P, Maniak G, Kotarba A, Sojka Z. Catal Commun, 2009, 10: 1062
-
[13]
[13] Haber J, Machej T, Janas J, Nattich M. Catal Today, 2004, 90: 15
-
[14]
[14] Haber J, Nattich M, Machej T. Appl Catal B, 2008, 77: 278
-
[15]
[15] Pasha N, Lingaiah N, Reddy P S S, Prasad P S S. Catal Lett, 2007, 118: 64
-
[16]
[16] Cheng H K, Huang Y Q, Wang A Q, Li L, Wang X D, Zhang T. Appl Catal B, 2009, 89: 391
-
[17]
[17] Pasha N, Lingaiah N, Babu N S, Reddy P S S, Prasad P S S. Catal Commun, 2008, 10: 132
-
[18]
[18] Pasha N, Lingaiah N, Reddy P S S, Prasad P S S. Catal Lett, 2009, 127: 101
-
[19]
[19] Yoshino H, Ohnishi C H, Hosokawa S, Wada K, Inoue M. J Mater Sci, 2011, 46:797
-
[20]
[20] Maniak G, Stelmachowski P, Zasada F, Piskorz W, Kotarba A, Sojka Z. Catal Today, 2011, 176: 369
-
[21]
[21] Maniak G, Stelmachowski P, Kotarba A, Sojka Z, Rico-Pérez V, Bueno-López A. Appl Catal B, 2013, 136-137: 302
-
[22]
[22] Zhang F F, Wang X P, Zhang X X, Turxun M, Yu H B, Zhao J J. Chem Eng J, 2014, 256: 365
-
[23]
[23] Wu H P, Qian Z Y, Xu X L, Xu X F. J Fuel Chem Technol, 2011, 39: 115
-
[24]
[24] Wu H P, Li W J, Guo L, Pan Y F, Xu X F. J Fuel Chem Technol, 2011, 39: 550
-
[25]
[25] Pachatouridou E, Papista E, Iliopoulou E F, Delimitis A, Goula G, Yentekakis I V, Marnellos G E, Konsolakis M. J Environ Chem Eng, 2015, 3: 815
-
[26]
[26] Konsolakis M, Aligizou F, Goula G, Yentekakis I V. Chem Eng J, 2013, 230: 286
-
[27]
[27] Konsolakis M, Drosou C, Yentekakis I V. Appl Catal B, 2012, 123-124: 405
-
[28]
[28] Sugawara K, Nobukawa T, Yoshida M, Sato Y, Okumura K, Tomishige K, Kunimori K. Appl Catal B, 2007, 69: 154
-
[29]
[29] Zhang X Y, Shen Q, He C, Ma C Y, Cheng J, Hao Z P. Catal Commun, 2012, 18: 151
-
[30]
[30] Colombo M, Nova I, Tronconi E, SchmeiBer V, Bandl-Konrad B, Zimmermann L. Appl Catal B, 2012, 111-112: 106
-
[31]
[31] Debbagh M N, Bueno-López A, de Lecea C S M, Pérez-Ramírez J. Appl Catal A, 2007, 327: 66
-
[32]
[32] Debbagh M N, de Lecea C S M, Pérez-Ramírez J. Appl Catal B, 2007, 70: 335
-
[33]
[33] Kögel M, Mönnig R, Schwieger W, Tissler A, Turek T. J Catal, 1999, 182: 470
-
[34]
[34] Nobukawa T, Sugawara K, Okumura K, Tomishige K, Kunimori K. Appl Catal B, 2007, 70: 342
-
[35]
[35] Pophal C, Yogo T, Yamada K, Segawa K. Appl Catal B, 1998, 16: 177
-
[36]
[36] Yamada K, Kondo S, Segawa K. Microporous Mesoporous Mater, 2000, 35-36: 227
-
[37]
[37] Pekridis G, Kaklidis N, Konsolakis M, Iliopoulou E F, Yentekakis I V, Marnellos G E. Top Catal, 2011, 54: 1135
-
[38]
[38] Barakat N A M, Abdelkareem M A, El-Newehy M, Kim H Y. Nanoscale Res Lett, 2013, 8: 402/1
-
[39]
[39] Farzaneh F, Mehraban Z, Norouzi F. Environ Chem Lett, 2010, 8: 69
-
[40]
[40] Zhou D S, Yan A F, Wu Y, Wu T H. Indian J Chem A, 2013, 52: 51
-
[41]
[41] Wang Y P, Zhu J W, Yang X J, Lu L D, Wang X. Thermochim Acta, 2005, 437: 106
-
[42]
[42] Hussein G A M, Nohman A K H, Attyia K M A. J Therm Anal, 1994, 42: 1155
-
[43]
[43] Mohamed M A, Halawy S A, Ebrahim M M. J Anal Appl Pyr, 1993, 27: 109
-
[44]
[44] Konsolakis M, Carabineiro S A C, Papista E, Marnellos G E, Tavares P B, Moreira J A, Romaguera-Barcelay Y, Figueiredo J L. Catal Sci Technol, 2015, 5: 3714
-
[45]
[45] Abu-Zied B M. Appl Catal A, 2008, 334: 234
-
[46]
[46] Zhai X L, Cheng Y H, Zhang Z T, Jin Y, Cheng Y. Int J Hydrogen Energy, 2011, 36: 7105
-
[47]
[47] Guil-López R, La Parola V, Peña M A, Fierro J L G. Int J Hydrogen Energy, 2012, 37: 7042
-
[48]
[48] Lin W W, Cheng H Y, Ming J, Yu Y C, Zhao F Y. J Catal, 2012, 291: 149
-
[49]
[49] Kaichev V V, Gladky A Y, Prosvirin I P, Saraev A A, Hävecker M, Knop-Gericke A, Schlögl R, Bukhtiyarov V I. Surf Sci, 2013, 609: 113
-
[50]
[50] Greiner M T, Helander M G, Wang Z B, Tang W M, Lu Z H. J Phys Chem C, 2010, 114: 19777
-
[51]
[51] Seo H O, Nam J W, Kim K D, Sim J K, Kim Y D, Lim D C. J Mol Catal A, 2012, 361-362: 45
-
[52]
[52] Abu-Zied B M, Asiri A M. Thermochim Acta, 2014, 581: 110
-
[53]
[53] Roy B, Artyushkova K, Pham H N, Li L, Datye A K, Leclerc C A. Int J Hydrogen Energy, 2012, 37: 18815
-
[54]
[54] Rodríguez J L, Valenzuela M A, Poznyak T, Lartundo L, Chairez I. J Hazard Mater, 2013, 262: 472
-
[55]
[55] Rocca M, Savio L, Vattuone L, Burghaus U, Palomba V, Novelli N, Buatier de Mongeot F, Valbusa U, Gunnella R, Comelli G, Baraldi A, Lizzit S, Paolucci G. Phys Rev B, 2000, 61: 213
-
[56]
[56] Liu Y M, Wang T, Sun X, Fang Q Q, Lü Q R, Song X P, Sun Z Q. Appl Surf Sci, 2011, 257: 6540
-
[57]
[57] Payne B P, Biesinger M C, McIntyre N S. J Electron Spectrosc Relat Phenom, 2012, 185: 159
-
[58]
[58] Biesinger M C, Payne B P, Lau L W M, Gerson A, Smart R St C. Surf Interf Anal, 2009, 41: 324
-
[59]
[59] Piumetti M, Bensaid S, Russo N, Fino D. Appl Catal B, 2015, 165: 742
-
[60]
[60] Yamashita T, Vannic A. J Catal, 1996, 161: 254
-
[61]
[61] Pietrzyk P, Zasada F, Piskorz W, Kotarba A, Sojka Z. Catal Today, 2007, 119: 219
-
[1]
-
-
-
[1]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[2]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[3]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[4]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[5]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[6]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[7]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[8]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[9]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[10]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[11]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[12]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[13]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[14]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[15]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[16]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[17]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[18]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[19]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[20]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(293)
- HTML views(6)