Citation: Martin Šustek, Blažej Horváth, Ivo Vávra, Miroslav Gál, Edmund Dobročka, Milan Hronec. Effects of structures of molybdenum catalysts on selectivity in gas-phase propylene oxidation[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1900-1909. doi: 10.1016/S1872-2067(15)60961-5 shu

Effects of structures of molybdenum catalysts on selectivity in gas-phase propylene oxidation

  • Corresponding author: Blažej Horváth, 
  • Received Date: 10 June 2015
    Available Online: 25 July 2015

  • Molybdenum-based catalysts for the gas-phase oxidation of propylene with air were investigated. Various types of silica-supported molybdenum oxide and molybdenum-bismuth mixed oxide catalysts were prepared from inorganic and organometallic molybdenum precursors using wet impregnation and physical vapor deposition methods. The epoxidation activities of the prepared catalysts showed direct correlations with their nanostructures, which were identified using transmission electron microscopy. The appearance of a partly or fully crystalline molybdenum oxide phase, which interacted poorly with the silica support, decreased the selectivity for propylene oxide formation to below 10%; non-crystalline octahedrally coordinated molybdenum species anchored on the support gave propylene oxide formations greater than 55%, with 11% propylene conversion. Electrochemical characterization of molybdenum oxides with various morphologies showed the importance of structural defects. Direct promotion by bismuth of the epoxidation reactivities over molybdenum oxides is disputed.
  • 加载中
    1. [1]

      [1] Nijhuis T A, Makkee M, Moulijn J A, Weckhuysen B M. Ind Eng Chem Res, 2006, 45: 3447

    2. [2]

      [2] Pang Y J, Chen X H, Xu C Z, Lei Y J, Wei K M. ChemCatChem, 2014, 6: 876

    3. [3]

      [3] Kizilkaya A C, Senkan S, Onal I. J Mol Catal A, 2010, 330: 107

    4. [4]

      [4] Shen K, Liu X H, Lu G Z, Miao Y X, Guo Y L, Wang Y Q, Guo Y. J Mol Catal A, 2013, 373: 78

    5. [5]

      [5] Monnier J R. Appl Catal A, 2001, 221: 73

    6. [6]

      [6] Zheng X, Zhang Q, Guo Y L, Zhan W C, Guo Y, Wang Y S, Lu G Z. J Mol Catal A, 2012, 357: 106

    7. [7]

      [7] Chu H, Yang L J, Zhang Q H, Wang Y. J Catal, 2006, 241: 225

    8. [8]

      [8] Suo Z H, Jin M S, Lu J Q, Wei Z B, Li C. J Nat Gas Chem, 2008, 17: 184

    9. [9]

      [9] Wu G Q, Wang Y Q, Wang L N, Feng W P, Shi H N, Lin Y, Zhang T, Jin X, Wang S H, Wu X X, Yao P X. Chem Eng J, 2013, 215-216: 306

    10. [10]

      [10] Liu T, Hacarlioglu P, Oyama S T, Luo M F, Pan X R, Lu J Q. J Catal, 2009, 267: 202

    11. [11]

      [11] Murata K, Liu Y Y, Mimura N, Inaba M. Catal Commun, 2003, 4: 385

    12. [12]

      [12] Hashem A M, Groult H, Mauger A, Zaghib K,Julien C M. J Power Sources, 2012, 219: 126

    13. [13]

      [13] Marin Flores O G, Ha S. Appl Catal A, 2009, 352: 124

    14. [14]

      [14] Horváth B, Hronec M, Vávra I, Šustek M, Križanová Z, Dérer J, Dobročka E. Catal Commun, 2013, 34: 16

    15. [15]

      [15] Song Z X, Mimura N, Bravo-Suárez J J, Akita T, Tsubota S, Oyama S T. Appl Catal A, 2007, 316: 142

    16. [16]

      [16] Sian T S, Reddy G B. Sol Energy Mater Sol Cells, 2004, 82: 375

    17. [17]

      [17] Wang L, Peng B, Peng L N, Guo X F, Xie Z K, Ding W P. Sci Rep, 2013, 3: 2881

    18. [18]

      [18] Balula S S, Bruno S M, Gomes A C, Valente A A, Pillinger M, Gonçalves I S, MacQuarrie D J, Clark J H. Inorg Chim Acta, 2012, 387: 234

    19. [19]

      [19] Nguyen H H P, Ohkita H, Mizushima T, Kakuta N. Catal Lett, 2013, 143: 902

    20. [20]

      [20] Bañares M A. Catal Today, 1999, 51: 319

    21. [21]

      [21] Rabette P, Olivier D. J Less Common Met, 1974, 36: 299

    22. [22]

      [22] Klinbumrung A, Thongtem T, Thongtem S. J Nanomater, 2012: 930763

    23. [23]

      [23] Tokarz-Sobieraj R, Hermann K, Witko M, Blume A, Mestl G, Schlögl R. Surf Sci, 2001, 489: 107

    24. [24]

      [24] Yuan S P, Wang J G, Li Y W, Peng S Y. Catal Today, 2000, 61: 243

    25. [25]

      [25] Collart O, Van Der Voort P, Vansant E F, Gustin E, Bouwen A, Schoemaker D, Ramachandra Rao R, Weckhuysen B M, Schoonheydt R A. Phys Chem Chem Phys, 1999, 1: 4099

    26. [26]

      [26] Balcar H, Mishra D, Marceau E, Carrier X, Žilková N, Bastl Z. Appl Catal A, 2009, 359: 129

    27. [27]

      [27] Jeyakumar K, Chand D K. J Chem Sci, 2009, 121: 111

    28. [28]

      [28] Rempel K U, Williams-Jones A E, Migdisov A A. Geochim Cosmochim Acta, 2008, 72: 3074

    29. [29]

      [29] Cotton F A, Wilkinson G. Advanced Inorganic Chemistry. 5th ed. New York: John Wiley & Sons, 1988. 829

    30. [30]

      [30] Taylor M J, Jirong W, Rickard C E F. Polyhedron, 1993, 12: 1433

    31. [31]

      [31] Litinskii A O, Narushis Y P, Shatkovskaya D B. J Struct Chem, 1985, 26: 843

    32. [32]

      [32] Spahr M E, Novak P, Haas O, Nesper R. J Power Sources, 1995, 54: 346

    33. [33]

      [33] McEvoy T M, Stevenson K J, Hupp J T, Dang X J. Langmuir, 2003, 19: 4316

    34. [34]

      [34] Dong W, Mansour A N, Dunn B. Solid State Ionics, 2001, 144: 31

    35. [35]

      [35] Kongmark C, Martis V, Rubbens A, Pirovano C, Löfberg A, Sankar G, Bordes-Richard E, Vannier R N, Van Beek W. Chem Commun, 2009: 4850

    36. [36]

      [36] Liu Y W, Zhang X M, Suo J S. Chin J Catal (刘义武, 张小明, 索继栓. 催化学报), 2013, 34: 336

    37. [37]

      [37] Su J, Zhou J C, Liu C Y, Wang X S, Guo H C. Chin J Catal (苏际, 周军成, 刘春燕, 王祥生, 郭洪臣. 催化学报), 2010, 31: 1195

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    3. [3]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    11. [11]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    13. [13]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    19. [19]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    20. [20]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

Metrics
  • PDF Downloads(0)
  • Abstract views(296)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return