Citation: Yangyang Yuan, Hongchao Liu, Miao Yang, Shutao Xu, . Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1910-1919. doi: 10.1016/S1872-2067(15)60960-3 shu

Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance

  • Corresponding author:
  • Received Date: 16 July 2015
    Available Online: 18 July 2015

    Fund Project: 国家自然科学基金(21101150, 21476228, 21473182). (21101150, 21476228, 21473182)

  • The present study reports a novel strategy to fabricate nanocrystal-assembled hierarchical MOR zeolites. This is the first demonstration of hierarchical MOR without preferential growth along the c-axis, which facilitates mass transfer in the 12-membered ring channels of MOR zeolite for the conversions involving bulky molecules. The facile method involves the combined use of tetraethylammonium hydroxide (TEAOH) and commercial surfactants, in which TEAOH is essential for the construction of nanocrystal assemblies. The surfactant serves as a crystal growth-inhibiting agent to further inhibit nanocrystalline particle growth, resulting in enhanced mesoporosity. The hierarchical MOR assembled particles, constructed of 20-50-nm crystallites, exhibit superior catalytic properties in the alkylation of benzene with benzyl alcohol compared with the control sample, as the hierarchical MOR possesses a larger external surface area and longer c-axis dimension. More importantly, the material shows improved activity and stability in the dimethyl ether carbonylation to methyl acetate reaction, which is a novel route to produce ethanol from syngas.
  • 加载中
    1. [1]

      [1] Corma A. Chem Rev, 1997, 97: 2373

    2. [2]

      [2] Weitkamp J. Solid State Ionics, 2000, 131: 175

    3. [3]

      [3] Cheung P, Bhan A, Sunley G J, Law D J, Iglesia E. J Catal, 2007, 245: 110

    4. [4]

      [4] Tromp M, van Bokhoven J A, Oostenbrink M T G, Bitter J H, de Jong K P, Koningsberger D C. J Catal, 2000, 190: 209

    5. [5]

      [5] Becker K A, Karge H G, Streubel W D. J Catal, 1973, 28: 403

    6. [6]

      [6] Meier W M. Z Kristall, 1961, 115: 439

    7. [7]

      [7] Boronat M, Martínez C, Corma A. Phys Chem Chem Phys, 2011, 13: 2603

    8. [8]

      [8] Ordomsky V V, Ivanova I I, Knyazeva E E, Yuschenko V V, Zaikovskii V I. J Catal, 2012, 295: 207

    9. [9]

      [9] Leng K Y, Wang Y, Hou C M, Lancelot C, Lamonier C, Rives A, Sun Y Y. J Catal, 2013, 306: 100

    10. [10]

      [10] Yang M, Tian P, Wang C, Yuan Y Y, Yang Y, Xu S T, He Y L, Liu Z M. Chem Commun, 2014, 50: 1845

    11. [11]

      [11] Tosheva L, Valtchev V P. Chem Mater, 2005, 17: 2494

    12. [12]

      [12] Holm M S, Taarning E, Egeblad K, Christensen C H. Catal Today, 2011, 168: 3

    13. [13]

      [13] Chen L H, Li X Y, Rooke J C, Zhang Y H, Yang X Y, Tang Y, Xiao F S, Su B L. J Mater Chem, 2012, 22: 17381

    14. [14]

      [14] Ivanova I I, Knyazeva E E. Chem Soc Rev, 2013, 42: 3671

    15. [15]

      [15] Möller K, Bein T. Chem Soc Rev, 2013, 42: 3689

    16. [16]

      [16] Serrano D P, Escola J M, Pizarro P. Chem Soc Rev, 2013, 42: 4004

    17. [17]

      [17] Verboekend D, Milina M, Mitchell S, Pérez-Ramírez J. Cryst Growth Des, 2013, 13: 5025

    18. [18]

      [18] Li K H, Valla J, Garcia-Martinez J. ChemCatChem, 2014, 6: 46

    19. [19]

      [19] Yuan Y Y, Tian P, Yang M, Fan D, Wang L Y, Xu S T, Wang C, Wang D H, Yang Y, Liu Z M. RSC Adv, 2015, 5: 9852

    20. [20]

      [20] Wang Q Y, Wei Y X, Xu S T, Zhang M Z, Meng S H, Fan D, Qi Y, Li J Z, Yu Z X, Yuan C Y, He Y L, Xu S L, Chen J R, Wang J B, Su B L, Liu Z M. Chin J Catal (王全义, 魏迎旭, 徐舒涛, 张默之, 孟霜鹤, 樊栋, 齐越, 李金哲, 于政锡, 袁翠峪, 何艳丽, 徐庶亮, 陈景润, 王金棒, 苏宝连, 刘中民. 催化学报), 2014, 35: 1727

    21. [21]

      [21] Tao H X, Yang H, Zhang Y H, Ren J W, Liu X H, Wang Y Q, Lu G Z. J Mater Chem A, 2013, 1: 13821

    22. [22]

      [22] Li X Y, Sun M H, Rooke J C, Chen L H, Su B L. Chin J Catal (李小云, 孙明慧, Rooke J C, 陈丽华, 苏宝连. 催化学报), 2013, 34: 22

    23. [23]

      [23] Yang J H, Chu J, Wang J Q, Yin D H, Lu J M, Zhang Y. Chin J Catal (杨建华, 初筠, 王金渠, 殷德宏, 鲁金明, 张艳. 催化学报), 2014, 35: 49

    24. [24]

      [24] Huang S J, Liu X H, Yu L L, Miao S, Liu Z N, Zhang S, Xie S J, Xu L Y. Microporous Mesoporous Mater, 2014, 191: 18

    25. [25]

      [25] Góra-Marek K, Tarach K, Tekla J, Olejniczak Z, Kuśtrowski P, Liu L C, Martinez-Triguero J, Rey F. J Phy Chem C, 2014, 118: 28043

    26. [26]

      [26] Tang T D, Zhang L, Fu W Q, Ma Y L, Xu J, Jiang J, Fang G, Y Xiao F S. J Am Chem Soc, 2013, 135: 11437

    27. [27]

      [27] Kim J, Jo C, Lee S, Ryoo R. J Mater Chem A, 2014, 2: 11905

    28. [28]

      [28] Liu Y H, Zhao N, Xian H, Cheng Q P, Tan Y S, Tsubaki N, Li X G. ACS Appl Mater Interfaces, 2015, 7: 8398

    29. [29]

      [29] Inagaki S, Watanabe Y, Nishita Y, Kubota Y. Chem Lett, 2013, 42: 186

    30. [30]

      [30] Lee S H, Lee D K, Shin C H, Paik W C, Lee W M, Hong S B. J Catal, 2000, 196: 158

    31. [31]

      [31] Xue H F, Huang X M, Ditzel E, Zhan E S, Ma M, Shen W J. Ind Eng Chem Res, 2013, 52: 11510

    32. [32]

      [32] Jo C, Jung J, Shin H S, Kim J, Ryoo R. Angew Chem Int Ed, 2013, 52: 10014

    33. [33]

      [33] Liu Y, Zhou X Z, Pang X M, Jin Y Y, Meng X J, Zheng X H, Gao X H, Xiao F S. ChemCatChem, 2013, 5: 1517

    34. [34]

      [34] Oumi Y, Kakinaga Y, Kodaira T, Teranishi T, Sano T. J Mater Chem, 2003, 13: 181

    35. [35]

      [35] Lu B W, Tsuda T, Oumi Y, Itabashi K, Sano T. Microporous Mesoporous Mater, 2004, 76: 1

    36. [36]

      [36] Lv A L, Xu H, Wu H H, Liu Y M, Wu P. Microporous Mesoporous Mater, 2011, 145: 80

    37. [37]

      [37] Li F, Yang L L, Xu G, Huang X Q, Yang X, Wei X, Ren Z H, Shen G, Han G R. J Alloys Compd, 2013, 577: 663

    38. [38]

      [38] Jelfs K E, Slater B, Lewis D W, Willock D J. Stud Surf Sci Catal, 2007, 170: 1685

    39. [39]

      [39] Che S N, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T. Nature, 2004, 429: 281

    40. [40]

      [40] Valtchev V P, Tosheva L, Bozhilov K N. Langmuir, 2005, 21: 10724

    41. [41]

      [41] Larsen S C. J Phy Chem C, 2007, 111: 18464

    42. [42]

      [42] Dědeček J, Sobalík Z, Wichterlová B. Catal Rev-Sci Eng, 2012, 54: 135

    43. [43]

      [43] Tarach K, Góra-Marek K, Tekla J, Brylewska K, Datka J, Mlekodaj K, Makowski W, López M C I, Triguero J M, Rey F. J Catal, 2014, 312: 46

    44. [44]

      [44] Coq B, Gourves V, Figuéras F. Appl Catal A, 1993, 100: 69

    45. [45]

      [45] Cheung P, Bhan A, Sunley G J, Iglesia E. Angew Chem Int Ed, 2006, 45: 1617

    46. [46]

      [46] Liu J L, Xue H F, Huang X M, Wu P H, Huang S J, Liu S B, Shen W J. Chin J Catal (刘俊龙, 薛会福, 黄秀敏, 吴培豪, 黄信炅, 刘尚斌, 申文杰. 催化学报), 2010, 31: 729

    47. [47]

      [47] Boronat M, Martínez-Sánchez C, Law D, Corma A. J Am Chem Soc, 2008, 130: 16316

    48. [48]

      [48] Zhou H, Zhu W L, Shi L, Liu H C, Liu S P, Xu S T, Ni Y M, Liu Y, Li L L, Liu Z M. Catal Sci Technol, 2015, 5: 1961

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    13. [13]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    15. [15]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

Metrics
  • PDF Downloads(0)
  • Abstract views(855)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return