Citation:
Tayebe Rostami, Majid Jafarian, Somaieh Miandari, Mohammad G. Mahjani, Fereydoon Gobal. Synergistic effect of cobalt and copper on a nickel-based modified graphite electrode during methanol electro-oxidation in NaOH solution[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1867-1874.
doi:
10.1016/S1872-2067(15)60959-7
-
The electrocatalytic oxidation of methanol was studied over Ni, Co and Cu binary or ternary alloys on graphite electrodes in a NaOH solution (0.1 mol/L). The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of methanol, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a significantly higher response for methanol oxidation compared to the other samples. The anodic peak currents showed a linear dependency on the square root of the scan rate, which is a characteristic of a diffusion controlled process. During CA studies, the reaction exhibited Cottrellin behavior and the diffusion coefficient of methanol was determined to be 6.25×10-6 cm2/s and the catalytic rate constant, K, for methanol oxidation was found to be 40×107 cm3/(mol·s). EIS was used to investigate the catalytic oxidation of methanol on the surface of the modified electrode.
-
-
-
[1]
[1] Ren X M, Zelenay P, Thomas S, Davey J, Gottesfeld S. J Power Sources, 2000, 86: 111
-
[2]
[2] Hosseini M G, Momeni M M. Electrochim Acta, 2012, 70: 1
-
[3]
[3] Heli H, Jafarian M G, Mahjani M, Gobal F. Electrochim acta, 2004, 49: 4999
-
[4]
[4] Scott K, Taama W M, Argyropoulos P. J Power Sources, 1999, 79: 43
-
[5]
[5] Kim J, Momma T, Osaka T. J Power Sources, 2009, 189: 999
-
[6]
[6] Wang Y, Li L, Hu L, Zhuang L, Lu J T, Xu B Q. Electrochem Commun, 2003, 5: 662
-
[7]
[7] Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani M G. J Solid State Electrochem, 2009, 13: 1171
-
[8]
[8] Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M G. Int J Hydrogen Energy, 2008, 33: 4367
-
[9]
[9] Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M G. Int J Hydrogen Energy, 2009, 34: 859
-
[10]
[10] Nonaka H, Matsumura Y. J Electroanal Chem, 2002, 520: 101
-
[11]
[11] Li W Z, Liang C H, Zhou W J, Qiu J S, Zhou Z H, Sun G Q, Xin Q. J Phys Chem B, 2003, 107: 6292
-
[12]
[12] Léger J M. J Appl Electrochem, 2001, 31: 767
-
[13]
[13] Iwasita T, Hoster H, John-Anacker A, Lin W F, Vielstich W. Langmuir, 2000, 16: 522
-
[14]
[14] Jafarian M, Mahjani M, Heli H, Gobal F, Khajehsharifi H, Hamedi M. Electrochim Acta, 2003, 48: 3423
-
[15]
[15] Lima A, Coutanceau C, Léger J M, Lamy C. J Appl Electrochem, 2001, 31: 379
-
[16]
[16] Lu C, Rice C, Masel R, Babu P K, Waszczuk P, Kim H S, Oldfield E, Wieckowski A. J Phys Chem B, 2002, 106: 9581
-
[17]
[17] Xu D, Liu Z P, Yang H Z, Liu Q S, Zhang J, Fang J Y, Zou S Z, Sun K. Angew Chem Int Ed, 2009, 48: 4217
-
[18]
[18] Min M K, Cho J, Cho K, Kim H. Electrochim Acta, 2000, 45: 4211
-
[19]
[19] Wang C, Waje M, Wang X, Tang J M, Haddon R C, Yan Y S. Nano Lett, 2004, 4: 345
-
[20]
[20] Fleischmann M, Korinek K, Pletcher D. J Electroanal Chem Interf Electrochem, 1971, 31: 39
-
[21]
[21] Golikand A N, Asgari M, Maragheh M G, Shahrokhian S. J Electroanal Chem, 2006, 588: 155
-
[22]
[22] Golikand A N, Shahrokhian S, Asgari M, Maragheh M G, Irannejad L, Khanchi A. J Power Sources, 2005, 144: 21
-
[23]
[23] Guo Y M, Hu C G, Yang L, Bai Z Y, Wang K, Chao S J. Electrochem Commun, 2011, 13: 886
-
[24]
[24] Hosseini M G, Abdolmaleki M, Ashrafpoor S. Chin J Catal (催化学报), 2013, 34: 1712
-
[25]
[25] Ojani R, Raoof J B, Zavvarmahalleh S R H. Electrochim Acta, 2008, 53: 2402
-
[26]
[26] Ortega J M. Thin Solid Films, 2000, 360: 159
-
[27]
[27] Rahim M A A, Abdel Hameed R M, Khalil M W. J Power Sources, 2004, 134: 160
-
[28]
[28] Entina V S, Petrii O A. Elektrokhimiya, 1967, 3: 1237
-
[29]
[29] Koch D F A, Rand D A J, Woods R. J Electroanal Chem Interf Electrochem, 1976, 70: 73
-
[30]
[30] Li M Y, Zhao S Z, Han G Y, Yang B S. J Power Sources, 2009, 191: 351
-
[31]
[31] Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M G. Electrochim Acta, 2008, 53: 6602
-
[32]
[32] Jafarian M, Moghaddam R B, Mahjani M G, Gobal F. J Appl Electrochem, 2006, 36: 913
-
[33]
[33] Jafarian M, Haghighatbin M A, Gobal F, Mahjani M G, Rayati S. J Electroanal Chem, 2011, 663: 14
-
[34]
[34] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. New York: Wiley and Sons, 2001. Ch. 5, 12, 14
-
[1]
-
-
-
[1]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[2]
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
-
[3]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[4]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[5]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[6]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[7]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[8]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[9]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[10]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[11]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[12]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[13]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[14]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[15]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[16]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[17]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[18]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[19]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[20]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(332)
- HTML views(21)