Citation: Tayebe Rostami, Majid Jafarian, Somaieh Miandari, Mohammad G. Mahjani, Fereydoon Gobal. Synergistic effect of cobalt and copper on a nickel-based modified graphite electrode during methanol electro-oxidation in NaOH solution[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1867-1874. doi: 10.1016/S1872-2067(15)60959-7 shu

Synergistic effect of cobalt and copper on a nickel-based modified graphite electrode during methanol electro-oxidation in NaOH solution

  • Corresponding author: Majid Jafarian, 
  • Received Date: 25 May 2015
    Available Online: 30 July 2015

  • The electrocatalytic oxidation of methanol was studied over Ni, Co and Cu binary or ternary alloys on graphite electrodes in a NaOH solution (0.1 mol/L). The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of methanol, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a significantly higher response for methanol oxidation compared to the other samples. The anodic peak currents showed a linear dependency on the square root of the scan rate, which is a characteristic of a diffusion controlled process. During CA studies, the reaction exhibited Cottrellin behavior and the diffusion coefficient of methanol was determined to be 6.25×10-6 cm2/s and the catalytic rate constant, K, for methanol oxidation was found to be 40×107 cm3/(mol·s). EIS was used to investigate the catalytic oxidation of methanol on the surface of the modified electrode.
  • 加载中
    1. [1]

      [1] Ren X M, Zelenay P, Thomas S, Davey J, Gottesfeld S. J Power Sources, 2000, 86: 111

    2. [2]

      [2] Hosseini M G, Momeni M M. Electrochim Acta, 2012, 70: 1

    3. [3]

      [3] Heli H, Jafarian M G, Mahjani M, Gobal F. Electrochim acta, 2004, 49: 4999

    4. [4]

      [4] Scott K, Taama W M, Argyropoulos P. J Power Sources, 1999, 79: 43

    5. [5]

      [5] Kim J, Momma T, Osaka T. J Power Sources, 2009, 189: 999

    6. [6]

      [6] Wang Y, Li L, Hu L, Zhuang L, Lu J T, Xu B Q. Electrochem Commun, 2003, 5: 662

    7. [7]

      [7] Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani M G. J Solid State Electrochem, 2009, 13: 1171

    8. [8]

      [8] Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M G. Int J Hydrogen Energy, 2008, 33: 4367

    9. [9]

      [9] Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M G. Int J Hydrogen Energy, 2009, 34: 859

    10. [10]

      [10] Nonaka H, Matsumura Y. J Electroanal Chem, 2002, 520: 101

    11. [11]

      [11] Li W Z, Liang C H, Zhou W J, Qiu J S, Zhou Z H, Sun G Q, Xin Q. J Phys Chem B, 2003, 107: 6292

    12. [12]

      [12] Léger J M. J Appl Electrochem, 2001, 31: 767

    13. [13]

      [13] Iwasita T, Hoster H, John-Anacker A, Lin W F, Vielstich W. Langmuir, 2000, 16: 522

    14. [14]

      [14] Jafarian M, Mahjani M, Heli H, Gobal F, Khajehsharifi H, Hamedi M. Electrochim Acta, 2003, 48: 3423

    15. [15]

      [15] Lima A, Coutanceau C, Léger J M, Lamy C. J Appl Electrochem, 2001, 31: 379

    16. [16]

      [16] Lu C, Rice C, Masel R, Babu P K, Waszczuk P, Kim H S, Oldfield E, Wieckowski A. J Phys Chem B, 2002, 106: 9581

    17. [17]

      [17] Xu D, Liu Z P, Yang H Z, Liu Q S, Zhang J, Fang J Y, Zou S Z, Sun K. Angew Chem Int Ed, 2009, 48: 4217

    18. [18]

      [18] Min M K, Cho J, Cho K, Kim H. Electrochim Acta, 2000, 45: 4211

    19. [19]

      [19] Wang C, Waje M, Wang X, Tang J M, Haddon R C, Yan Y S. Nano Lett, 2004, 4: 345

    20. [20]

      [20] Fleischmann M, Korinek K, Pletcher D. J Electroanal Chem Interf Electrochem, 1971, 31: 39

    21. [21]

      [21] Golikand A N, Asgari M, Maragheh M G, Shahrokhian S. J Electroanal Chem, 2006, 588: 155

    22. [22]

      [22] Golikand A N, Shahrokhian S, Asgari M, Maragheh M G, Irannejad L, Khanchi A. J Power Sources, 2005, 144: 21

    23. [23]

      [23] Guo Y M, Hu C G, Yang L, Bai Z Y, Wang K, Chao S J. Electrochem Commun, 2011, 13: 886

    24. [24]

      [24] Hosseini M G, Abdolmaleki M, Ashrafpoor S. Chin J Catal (催化学报), 2013, 34: 1712

    25. [25]

      [25] Ojani R, Raoof J B, Zavvarmahalleh S R H. Electrochim Acta, 2008, 53: 2402

    26. [26]

      [26] Ortega J M. Thin Solid Films, 2000, 360: 159

    27. [27]

      [27] Rahim M A A, Abdel Hameed R M, Khalil M W. J Power Sources, 2004, 134: 160

    28. [28]

      [28] Entina V S, Petrii O A. Elektrokhimiya, 1967, 3: 1237

    29. [29]

      [29] Koch D F A, Rand D A J, Woods R. J Electroanal Chem Interf Electrochem, 1976, 70: 73

    30. [30]

      [30] Li M Y, Zhao S Z, Han G Y, Yang B S. J Power Sources, 2009, 191: 351

    31. [31]

      [31] Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M G. Electrochim Acta, 2008, 53: 6602

    32. [32]

      [32] Jafarian M, Moghaddam R B, Mahjani M G, Gobal F. J Appl Electrochem, 2006, 36: 913

    33. [33]

      [33] Jafarian M, Haghighatbin M A, Gobal F, Mahjani M G, Rayati S. J Electroanal Chem, 2011, 663: 14

    34. [34]

      [34] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. New York: Wiley and Sons, 2001. Ch. 5, 12, 14

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    3. [3]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    6. [6]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    7. [7]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    8. [8]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    16. [16]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    20. [20]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

Metrics
  • PDF Downloads(0)
  • Abstract views(332)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return