Citation:
Xin Zhao, Lei Huang, Hongrui Li, Hang Hu, Jin Han, Liyi Shi, Dengsong Zhang. Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn, Co) as efficient catalysts for the selective reduction of NO with NH3[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1886-1899.
doi:
10.1016/S1872-2067(15)60958-5
-
Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in the vanadium species and the formation of vanadates on the TiO2 support, and increased the amount of surface acid sites and the strength of these acids. The strong acid sites might be responsible for the high N2 selectivity at higher temperatures. Among these catalysts, Cu-V/TiO2 showed the highest activity and N2 selectivity at 225-375 ℃. The results of X-ray photoelectron spectroscopy, NH3-temperature-programmed desorption, and in-situ diffuse reflectance infrared Fourier transform spectroscopy suggested that the improved performance was probably due to more active surface oxygen species and increased strong surface acid sites. The outstanding activity, stability, and SO2/H2O durability of Cu-V/TiO2 make it a candidate to be a NOx removal catalyst for stationary flue gas.
-
Keywords:
- deNOx,
- Selective catalytic reduction,
- Vanadate,
- Transition metal
-
-
-
[1]
[1] Zhang L, Shi L Y, Huang L, Zhang J P, Gao R H, Zhang D S. ACS Catal, 2014, 4: 1753
-
[2]
[2] Kamolphop U, Taylor S F R, Breen J P, Burch R, Delgado J J, Chansai S, Hardacre C, Hengrasmee S, James S L. ACS Catal, 2011, 1: 1257
-
[3]
[3] Deka U, Lezcano-Gonzalez I, Weckhuysen B M, Beale A M. ACS Catal, 2013, 3: 413
-
[4]
[4] Maitarad P, Zhang D S, Gao R H, Shi L Y, Li H R, Huang L, Rungrotmongkol T, Zhang J P. J Phys Chem C, 2013, 117: 9999
-
[5]
[5] Chen L, Li J H, Ge M F. J Phys Chem C, 2009, 113: 21177
-
[6]
[6] Ettireddy P R, Ettireddy N, Boningari T, Pardemann R, Smirniotis P G. J Catal, 2012, 292: 53
-
[7]
[7] Phil H H, Reddy M P, Kumar P A, Ju L K, Hyo J S. Appl Catal B, 2008, 78: 301
-
[8]
[8] Bai S L, Zhao J H, Wang L, Zhu Z P. Catal Today, 2010, 158: 393
-
[9]
[9] Kompio P G W A, Brückner A, Hipler F, Auer G, Löffler E, Grünert W. J Catal, 2012, 286: 237
-
[10]
[10] Putluru S S R, Schill L, Gardini D, Mossin S, Wagner J B, Jensen A D, Fehrmann R. J Mater Sci, 2014, 49: 2705
-
[11]
[11] Camposeco R, Castillo S, Mugica V, Mejía-Centeno I, Marín J. Chem Eng J, 2014, 242: 313
-
[12]
[12] Koh H L, Park H K. J Ind Eng Chem, 2013, 19: 73
-
[13]
[13] Centeno M A, Malet P, Carrizosa I, Odriozola J A. J Phys Chem B, 2000, 104: 3310
-
[14]
[14] Lietti L, Nova I, Forzatti P. Top Catal, 2000, 11-12: 111
-
[15]
[15] Lietti L, Nova I, Ramis G, Dall'Acqua L, Busca G, Giamello E, Forzatti P, Bregani F. J Catal, 1999, 187: 419
-
[16]
[16] Du X S, Gao X, Fu Y C, Gao F, Luo Z Y, Cen K F. J Colloid Interface Sci, 2012, 368: 406
-
[17]
[17] Li Q, Yang H S, Nie A M, Fan X Y, Zhang X B. Catal Lett, 2011, 141: 1237
-
[18]
[18] Putluru S S R, Riisager A, Fehrmann R. Catal Lett, 2009, 133: 370
-
[19]
[19] Gao R H, Zhang D S, Liu X G, Shi L Y, Maitarad P, Li H R, Zhang J P, Cao W G. Catal Sci Technol, 2013, 3: 191
-
[20]
[20] Lee K J, Kumar P A, Maqbool M S, Rao K N, Song K H, Ha H P. Appl Catal B, 2013, 142-143: 705
-
[21]
[21] Lee K J, Maqbool M S, Kumar P A, Song K H, Ha H P. Catal Lett, 2013, 143: 988
-
[22]
[22] Ettireddy P R, Ettireddy N, Mamedov S, Boolchand P, Smirniotis P G. Appl Catal B, 2007, 76: 123
-
[23]
[23] Vargas M A L, Casanova M, Trovarelli A, Busca G. Appl Catal B, 2007, 75: 303
-
[24]
[24] Boningari T, Koirala R, Smirniotis P G. Appl Catal B, 2012, 127: 255
-
[25]
[25] Sagar A, Trovarelli A, Casanova M, Schermanz K. SAE Int J Engines, 2011, 4: 1839
-
[26]
[26] Yang S J, Wang C Z, Ma L, Peng Y, Qu Z, Yan N Q, Chen J H, Chang H Z, Li J H. Catal Sci Technol, 2013, 3: 161
-
[27]
[27] Liu Z M, Li Y, Zhu T L, Su H, Zhu J Z. Ind Eng Chem Res, 2014, 53: 12964
-
[28]
[28] Huang L, Shi L Y, Zhao X, Xu J, Li H R, Zhang J P, Zhang D S. CrystEngComm, 2014, 16: 5128
-
[29]
[29] Liu F D, He H, Lian Z H, Shan W P, Xie L J, Asakura K, Yang W W, Deng H. J Catal, 2013, 307: 340
-
[30]
[30] Casanova M, Schermanz K, Llorca J, Trovarelli A. Catal Today, 2012, 184: 227
-
[31]
[31] Park E, Kim M, Jung H, Chin S, Jurng J. ACS Catal, 2013, 3: 1518
-
[32]
[32] Zhang J, Xu Q, Li M J, Feng Z C, Li C. J Phys Chem C, 2009, 113: 1698
-
[33]
[33] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Angew Chem Int Ed, 2008, 47: 1766
-
[34]
[34] Gao X T, Jehng J M, Wachs I E. J Catal, 2002, 209: 43
-
[35]
[35] Giakoumelou I, Fountzoula C, Kordulis C, Boghosian S. J Catal, 2006, 239: 1
-
[36]
[36] Besselmann S, Löffler E, Muhler M. J Mol Catal A, 2000, 162: 401
-
[37]
[37] Huang L, Zhao X, Zhang L, Shi L Y, Zhang J P, Zhang D S. Nanoscale, 2015, 7: 2743
-
[38]
[38] Li K R, Wang Y J, Wang S R, Zhu B L, Zhang S M, Huang W P, Wu S H. J Nat Gas Chem, 2009, 18: 449
-
[39]
[39] Huo C L, Ouyang J, Yang H M. Sci Rep, 2014, 4: 3682
-
[40]
[40] Zhao W, Zhong Q, Pan Y X, Zhang R. Chem Eng J, 2013, 228: 815
-
[41]
[41] Zhao Y B, Qin Z F, Wang G F, Dong M, Huang L C, Wu Z W, Fan W B, Wang J G. Fuel, 2013, 104: 22
-
[42]
[42] Chen S, Chu W, Liu X, Tong D G. J Nat Gas Chem, 2011, 20: 553
-
[43]
[43] Liu F D, He H, Zhang C B, Feng Z C, Zheng L R, Xie Y N, Hu T D. Appl Catal B, 2010, 96: 408
-
[44]
[44] Trawczyński J, Bielak B, Miśta W. Appl Catal B, 2005, 55: 277
-
[45]
[45] Zheng J, Chu W, Zhang H, Jiang C F, Dai X Y. J Nat Gas Chem, 2010, 19: 583
-
[46]
[46] Li C M, Zhou J Y, Gao W, Zhao J W, Liu J, Zhao Y F, Wei M, Evans D G, Duan X. J Mater Chem A, 2013, 1: 5370
-
[47]
[47] Palacio L A, Silva J M, Ribeiro F R, Ribeiro M F. Catal Today, 2008, 133-135: 502
-
[48]
[48] Nguyen L D, Loridant S, Launay H, Pigamo A, Dubois J L, Millet J M M. J Catal, 2006, 237: 38
-
[49]
[49] Chary K V R, Kumar C P, Rajiah T, Srikanth C S. J Mol Catal A, 2006, 258: 313
-
[50]
[50] Palacio L A, Silva E R, Catalão R, Silva J M, Hoyos D A, Ribeiro F R, Ribeiro M F. J Hazard Mater, 2008, 153: 628
-
[51]
[51] Casanova M, Schermanz K, Llorca J, Trovarelli A. Catal Today, 2012, 184: 227
-
[52]
[52] Cai S X, Zhang D S, Zhang L, Huang L, Li H R, Gao R H, Shi L Y, Zhang J P. Catal Sci Technol, 2014, 4: 93
-
[53]
[53] Fang C, Zhang D S, Shi L Y, Gao R H, Li H R, Ye L P, Zhang J P. Catal Sci Technol, 2013, 3: 803
-
[54]
[54] Zhang D S, Zhang L, Shi L Y, Fang C, Li H R, Gao R H, Huang L, Zhang J P. Nanoscale, 2013, 5: 1127
-
[55]
[55] Zhang L, Zhang D S, Zhang J P, Ca i S X, Fang C, Huang L, Li H R, Gao R H, Shi L Y. Nanoscale, 2013, 5: 9821
-
[56]
[56] Fang C, Zhang D S, Cai S X, Zhang L, Huang L, Li H R, Maitarad P, Shi L Y, Gao R H, Zhang J P. Nanoscale, 2013, 5: 9199
-
[57]
[57] Shan W P, Liu F D, He H, Shi X Y, Zhang C B. Catal Today, 2012, 184: 160
-
[58]
[58] Shan W P, Liu F D, He H, Shi X Y, Zhang C B. Appl Catal B, 2012, 115-116: 100
-
[59]
[59] Tronconi E, Nova I, Ciardelli C, Chatterjee D, Weibel M. J Catal, 2007, 245: 1
-
[60]
[60] Koebel M, Madia G, Raimondi F, Wokaun A. J Catal, 2002, 209: 159
-
[61]
[61] Schwidder M, Heikens S, De Toni A, Geisler S, Berndt M, Brückner A, Grünert W. J Catal, 2008, 259: 96
-
[62]
[62] Shi X Y, Liu F D, Xie L J, Shan W P, He H. Environ Sci Technol, 2013, 47: 3293
-
[63]
[63] Liu F D, Asakura K, He H, Liu Y C, Shan W P, Shi X Y, Zhang C B. Catal Today, 2011, 164: 520
-
[64]
[64] Long R Q, Yang R T. J Catal, 2002, 207: 158
-
[65]
[65] Cheng L S, Yang R T, Chen N. J Catal, 1996, 164: 70
-
[66]
[66] Liu F D, He H. J Phys Chem C, 2010, 114: 16929
-
[67]
[67] Chmielarz L, Dziembaj R, Grzybek T, Klinik J, Łojewski T, Olszewska D, Węgrzyn A. Catal Lett, 2000, 70: 51
-
[68]
[68] Wu Z B, Jiang B Q, Liu Y, Wang H Q, Jin R B. Environ Sci Technol, 2007, 41: 5812
-
[69]
[69] Chen L, Li J H, Ge M F. Environ Sci Technol, 2010, 44: 9590
-
[70]
[70] Peng Y, Wang C Z, Li J H. Appl Catal B, 2014, 144: 538
-
[71]
[71] Zhu J, Gao F, Dong L H, Yu W J, Qi L, Wang Z, Dong L, Chen Y. Appl Catal B, 2010, 95: 144
-
[72]
[72] Gu T T, Jin R B, Liu Y, Liu H F, Weng X L, Wu Z B. Appl Catal B, 2013, 129: 30
-
[73]
[73] Liu F D, He H, Ding Y, Zhang C B. Appl Catal B, 2009, 93: 194
-
[74]
[74] Larrubia M A, Ramis G, Busca G. Appl Catal B, 2001, 30: 101
-
[75]
[75] Qi G, Yang R T, Chang R. Appl Catal B, 2004, 51: 93
-
[76]
[76] Long R Q, Yang R T. J Catal, 2002, 207: 224
-
[77]
[77] Zhou G Y, Zhong B C, Wang W H, Guan X J, Huang B C, Ye D Q, Wu H J. Catal Today, 2011, 175: 157
-
[78]
[78] Foo R, Vazhnova T, Lukyanov D B, Millington P, Collier J, Rajaram R, Golunski S. Appl Catal B, 2015, 162: 174
-
[79]
[79] Burkardt A, Weisweiler W, van den Tillaart J A A, Schäfer- Sindlinger A, Lox E S. Top Catal, 2001, 16-17: 369
-
[80]
[80] Si Z C, Weng D, Wu X D, Li J, Li G. J Catal, 2010, 271: 43
-
[81]
[81] Zhang Q L, Song Z X, Ning P, Liu X, Li H, Gu J J. Catal Commun, 2015, 59: 170
-
[1]
-
-
-
[1]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[2]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[3]
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
-
[4]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[5]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[6]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[7]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[8]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[9]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008
-
[10]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[11]
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
-
[12]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[13]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[14]
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
-
[15]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[16]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[17]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[18]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[19]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[20]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(601)
- HTML views(81)