Citation:
Yanyan Xu, Mingming Gao, Guohui Zhang, Xinhua Wang, Jiajia Li, Shuguang Wang, Yuanhua Sang. Electrochemically reduced graphene oxide with enhanced electrocatalytic activity toward tetracycline detection[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1936-1942.
doi:
10.1016/S1872-2067(15)60956-1
-
An electrochemically reduced graphene oxide sample, ERGO-0.8V, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-1.2V (GO applied to a negative potential of -1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8V-modified glass carbon electrode (GC/ERGO-0.8V) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L. Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8V electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.
-
-
-
[1]
[1] Richardson B J, Lam P K S, Martin M. Marine Pollut Bull, 2005, 50: 913
-
[2]
[2] Pruden A, Pei R, Storteboom H, Carlson K H. Environ Sci Technol, 2006, 40: 7445
-
[3]
[3] Oka H, Ito Y, Matsumoto H. J Chromatogr A, 2000, 882: 109
-
[4]
[4] Schenck F J, Callery P S. J Chromatogr A, 1998, 812: 99
-
[5]
[5] Zhou M, Wang Y L, Zhai Y M, Zhai J F, Ren W, Wang F, Dong S J. Chemi Eur J, 2009, 15: 6116
-
[6]
[6] Guo H L, Wang X F, Qian Q Y, Wang F B, Xia X H. ACS Nano, 2009, 3: 2653
-
[7]
[7] Loetanantawong B, Suracheep C, Somasundrum M, Surareungchai W. Anal Chem, 2004, 76: 2266
-
[8]
[8] Vega D, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón J M. Anal Bioanal Chem, 2007, 389: 951
-
[9]
[9] Oungpipat W, Southwell-Keely P, Alexander P W. Analyst, 1995, 120: 1559
-
[10]
[10] Guo G P, Zhao F Q, Xiao F, Zeng B G. Int J Electrochem Sci, 2009, 4: 1365
-
[11]
[11] Wang H T, Zhao H M, Quan X, Chen S. Electroanalysis, 2011, 23: 1863
-
[12]
[12] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Electroanalysis, 2010, 22: 1027
-
[13]
[13] Gao W, Alemany L B, Ci L J, Ajayan P M. Nat Chem, 2009, 1: 403
-
[14]
[14] Loh K P, Bao Q L, Eda G, Chhowalla M. Nat Chem, 2010, 2: 1015
-
[15]
[15] Zhu C Z, Dong S J. Nanoscale, 2013, 5: 1753
-
[16]
[16] Ambrosi A, Bonanni A, Sofer Z, Cross J S, Pumera M. Chem Eur J, 2011, 17: 10763
-
[17]
[17] Wang J F, Yang S L, Guo D Y, Yu P, Li D, Ye J S, Mao L Q. Electrochem Commun, 2009, 11: 1892
-
[18]
[18] Shao Y Y, Wang J, Engelhard M, Wang C M, Lin Y H. J Mater Chem, 2010, 20: 743
-
[19]
[19] Ramesha G K, Sampath S. J Phy Chem C, 2009, 113: 7985
-
[20]
[20] Xu X B, Huang D K, Cao K, Wang M K, Zakeeruddin S M, Grätzel M. Sci Rep, 2013, 3: 1489
-
[21]
[21] Yang T, Li X, Li Q H, Guo X H, Guan Q, Jiao K. Polym Chem, 2013, 4: 1228
-
[22]
[22] Yuan B Q, Zeng X Y, Xu C Y, Liu L, Ma Y H, Zhang D J, Fan Y. Sensors Actuat B, 2013, 184: 15
-
[23]
[23] Zhang D J, Xu C Y, Li S J, Zhang R C, Yan H L, Miao H J, Fan Y, Yuan B Q. J Electroanal Chem, 2014, 717-718: 219
-
[24]
[24] Pumera M. Chem Soc Rev, 2010, 39: 4146
-
[25]
[25] Alwarappan S, Erdem A, Liu C, Li C Z. J Phy Chem C, 2009, 113: 8853
-
[26]
[26] Zeng Q, Cheng J S, Tang L H, Liu X F, Liu Y Z, Li J H, Jiang J H. Adv Funct Mater, 2010, 20: 3366
-
[27]
[27] Zhou Y F, Zhang G Q, Chen J, Yuan G E, Xu L, Liu L F, Yang F L. Electrochem Commun, 2012, 22: 69
-
[28]
[28] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45: 1558
-
[29]
[29] Noel M, Anantharaman P N. Surf Coatings Technol, 1986, 28: 161
-
[30]
[30] Hallam P M, Banks C E. Electrochem Commun, 2011, 13: 8
-
[31]
[31] Murphy M A, Wilcox G D, Dahm R H, Marken F. Electrochem Commun, 2003, 5: 51
-
[32]
[32] Kang X H, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Talanta, 2010, 81: 754
-
[1]
-
-
-
[1]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[2]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[3]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[4]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[5]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[6]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[7]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[8]
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[11]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[12]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[13]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[14]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[15]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[16]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[17]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[18]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[19]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[20]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(455)
- HTML views(41)