Citation: Yanyan Xu, Mingming Gao, Guohui Zhang, Xinhua Wang, Jiajia Li, Shuguang Wang, Yuanhua Sang. Electrochemically reduced graphene oxide with enhanced electrocatalytic activity toward tetracycline detection[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1936-1942. doi: 10.1016/S1872-2067(15)60956-1 shu

Electrochemically reduced graphene oxide with enhanced electrocatalytic activity toward tetracycline detection

  • Corresponding author: Mingming Gao,  Shuguang Wang, 
  • Received Date: 23 April 2015
    Available Online: 3 July 2015

    Fund Project: 国家自然科学基金(21007033) (21007033) 山东大学基本科研业务费专项资金(2015JC017). (2015JC017)

  • An electrochemically reduced graphene oxide sample, ERGO-0.8V, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-1.2V (GO applied to a negative potential of -1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8V-modified glass carbon electrode (GC/ERGO-0.8V) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L. Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8V electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.
  • 加载中
    1. [1]

      [1] Richardson B J, Lam P K S, Martin M. Marine Pollut Bull, 2005, 50: 913

    2. [2]

      [2] Pruden A, Pei R, Storteboom H, Carlson K H. Environ Sci Technol, 2006, 40: 7445

    3. [3]

      [3] Oka H, Ito Y, Matsumoto H. J Chromatogr A, 2000, 882: 109

    4. [4]

      [4] Schenck F J, Callery P S. J Chromatogr A, 1998, 812: 99

    5. [5]

      [5] Zhou M, Wang Y L, Zhai Y M, Zhai J F, Ren W, Wang F, Dong S J. Chemi Eur J, 2009, 15: 6116

    6. [6]

      [6] Guo H L, Wang X F, Qian Q Y, Wang F B, Xia X H. ACS Nano, 2009, 3: 2653

    7. [7]

      [7] Loetanantawong B, Suracheep C, Somasundrum M, Surareungchai W. Anal Chem, 2004, 76: 2266

    8. [8]

      [8] Vega D, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón J M. Anal Bioanal Chem, 2007, 389: 951

    9. [9]

      [9] Oungpipat W, Southwell-Keely P, Alexander P W. Analyst, 1995, 120: 1559

    10. [10]

      [10] Guo G P, Zhao F Q, Xiao F, Zeng B G. Int J Electrochem Sci, 2009, 4: 1365

    11. [11]

      [11] Wang H T, Zhao H M, Quan X, Chen S. Electroanalysis, 2011, 23: 1863

    12. [12]

      [12] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Electroanalysis, 2010, 22: 1027

    13. [13]

      [13] Gao W, Alemany L B, Ci L J, Ajayan P M. Nat Chem, 2009, 1: 403

    14. [14]

      [14] Loh K P, Bao Q L, Eda G, Chhowalla M. Nat Chem, 2010, 2: 1015

    15. [15]

      [15] Zhu C Z, Dong S J. Nanoscale, 2013, 5: 1753

    16. [16]

      [16] Ambrosi A, Bonanni A, Sofer Z, Cross J S, Pumera M. Chem Eur J, 2011, 17: 10763

    17. [17]

      [17] Wang J F, Yang S L, Guo D Y, Yu P, Li D, Ye J S, Mao L Q. Electrochem Commun, 2009, 11: 1892

    18. [18]

      [18] Shao Y Y, Wang J, Engelhard M, Wang C M, Lin Y H. J Mater Chem, 2010, 20: 743

    19. [19]

      [19] Ramesha G K, Sampath S. J Phy Chem C, 2009, 113: 7985

    20. [20]

      [20] Xu X B, Huang D K, Cao K, Wang M K, Zakeeruddin S M, Grätzel M. Sci Rep, 2013, 3: 1489

    21. [21]

      [21] Yang T, Li X, Li Q H, Guo X H, Guan Q, Jiao K. Polym Chem, 2013, 4: 1228

    22. [22]

      [22] Yuan B Q, Zeng X Y, Xu C Y, Liu L, Ma Y H, Zhang D J, Fan Y. Sensors Actuat B, 2013, 184: 15

    23. [23]

      [23] Zhang D J, Xu C Y, Li S J, Zhang R C, Yan H L, Miao H J, Fan Y, Yuan B Q. J Electroanal Chem, 2014, 717-718: 219

    24. [24]

      [24] Pumera M. Chem Soc Rev, 2010, 39: 4146

    25. [25]

      [25] Alwarappan S, Erdem A, Liu C, Li C Z. J Phy Chem C, 2009, 113: 8853

    26. [26]

      [26] Zeng Q, Cheng J S, Tang L H, Liu X F, Liu Y Z, Li J H, Jiang J H. Adv Funct Mater, 2010, 20: 3366

    27. [27]

      [27] Zhou Y F, Zhang G Q, Chen J, Yuan G E, Xu L, Liu L F, Yang F L. Electrochem Commun, 2012, 22: 69

    28. [28]

      [28] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45: 1558

    29. [29]

      [29] Noel M, Anantharaman P N. Surf Coatings Technol, 1986, 28: 161

    30. [30]

      [30] Hallam P M, Banks C E. Electrochem Commun, 2011, 13: 8

    31. [31]

      [31] Murphy M A, Wilcox G D, Dahm R H, Marken F. Electrochem Commun, 2003, 5: 51

    32. [32]

      [32] Kang X H, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Talanta, 2010, 81: 754

  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    8. [8]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    12. [12]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

Metrics
  • PDF Downloads(0)
  • Abstract views(455)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return