Citation: Huan Liu, Yi Lin, Zhen Ma. Rh2O3/mesoporous MOx-Al2O3 (M = Mn, Fe, Co, Ni, Cu, Ba) catalysts: Synthesis, characterization, and catalytic applications[J]. Chinese Journal of Catalysis, ;2016, 37(1): 73-82. doi: 10.1016/S1872-2067(15)60951-2 shu

Rh2O3/mesoporous MOx-Al2O3 (M = Mn, Fe, Co, Ni, Cu, Ba) catalysts: Synthesis, characterization, and catalytic applications

  • Corresponding author: Zhen Ma, 
  • Received Date: 29 May 2015
    Available Online: 3 July 2015

    Fund Project: 国家自然科学基金(21477022). (21477022)

  • Recently, a one-pot self-assembly method was proposed for the synthesis of mesoporous Al2O3 and MOx-Al2O3 composite materials. However, few attempts have been made to use mesoporous MOx-Al2O3 composites to support metal oxides for catalysis. In the present work, mesoporous MOx-Al2O3 (M = Mn, Fe, Co, Ni, Cu, Ba) materials were prepared by a one-pot self-assembly method using Pluronic P123 as a structure-directing agent. The obtained mesoporous materials were loaded with Rh2O3 nanoparticles via impregnation with Rh(NO3)3 followed by calcination in air at 500 ℃. The resulting catalysts were characterized by X-ray diffraction, N2 adsorption-desorption measurements, transmission electron microscopy, inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy, and their catalytic activity and stability for CO oxidation and N2O decomposition were tested. The Rh2O3 nanoparticles were found to be on the order of 1 nm in size and were highly dispersed on the high surface area mesoporous MOx-Al2O3 supports. A number of the Rh2O3/mesoporous MOx-Al2O3 catalysts exhibited higher catalytic activity than the Rh2O3/mesoporous Al2O3 prepared for comparison.
  • 加载中
    1. [1]

      [1] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.

    2. [2]

      [2] D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024.

    3. [3]

      [3] A. Corma, Chem. Rev., 1997, 97, 2373.

    4. [4]

      [4] J. Y. Ying, C. P. Mehnert, M. S. Wong, Angew. Chem. Int. Ed., 1999, 38, 56.

    5. [5]

      [5] D. T. On, D. Desplantier-Giscard, C. Danumah, S. Kaliaguine, Appl. Catal. A., 2003, 253, 545.

    6. [6]

      [6] Y. Wan, D. Y. Zhao, Chem. Rev., 2007, 107, 2821.

    7. [7]

      [7] H. Tüysüz, F. Schüth, Adv. Catal., 2012, 55, 127.

    8. [8]

      [8] F. Schüth, Chem. Mater., 2001, 13, 3184.

    9. [9]

      [9] Y. Ren, Z. Ma, P. G. Bruce, Chem. Soc. Rev., 2012, 41, 4909.

    10. [10]

      [10] D. Gu, F. Schüth, Chem. Soc. Rev., 2014, 43, 313.

    11. [11]

      [11] C. N. Satterfield, Heterogeneous Catalysis in Industrial Practice, 2nd ed., Krieger Publishing, Malabar, Florida, 1991.

    12. [12]

      [12] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science, 1995, 269, 1242.

    13. [13]

      [13] F. Vaudry, S. Khodabandeh, M. E. Davis, Chem. Mater., 1996, 8, 1451.

    14. [14]

      [14] Z. R. Zhang, T. J. Pinnavaia, J. Am. Chem. Soc., 2002, 124, 12294.

    15. [15]

      [15] B. Z. Tian, H. F. Yang, X. Y. Liu, S. H. Xie, C. Z. Yu, J. Fan, B. Tu, D. Y. Zhao, Chem. Commun., 2002, 1824.

    16. [16]

      [16] B. Z. Tian, X. Y. Liu, B. Tu, C. Z. Yu, J. Fan, L. M. Wang, S. H. Xie, G. D. Stucky, D. Y. Zhao, Nat. Mater., 2003, 2, 159.

    17. [17]

      [17] K. Niesz, P. D. Yang, G. A. Somorjai, Chem. Commun., 2005, 1986.

    18. [18]

      [18] Q. Yuan, A. X. Yin, C. Luo, L. D. Sun, Y. W. Zhang, W. T. Duan, H. C. Liu, C. H. Yan, J. Am. Chem. Soc., 2008, 130, 3465.

    19. [19]

      [19] S. M. Morris, P. F. Fulvio, M. Jaroniec, J. Am. Chem. Soc., 2008, 130, 15210.

    20. [20]

      [20] L. B. Sun, W. H. Tian, X. Q. Liu, J. Phys. Chem. C, 2009, 113, 19172.

    21. [21]

      [21] W. Li, C. Y. Cao, L. Y. Wu, M. F. Ge, W. G. Song, J. Hazard Mater., 2011, 198, 143.

    22. [22]

      [22] H. Oveisi, A. Beitollahi, M. Imura, C. W. Wu, Y. Yamauchi, Microporous Mesoporous Mater., 2010, 134, 150.

    23. [23]

      [23] S. M. Morris, J. A. Horton, M. Jaroniec, Microporous Mesoporous Mater., 2010, 128, 180.

    24. [24]

      [24] D. H. Pan, M. Guo, M. He, S. W. Chen, X. Wang, F. Yu, R. F. Li, J. Mater. Res., 2014, 29, 811.

    25. [25]

      [25] W. Q. Cai, J. G. Yu, C. Anand, A. Vinu, M. Jaroniec, Chem. Mater., 2011, 23, 1147.

    26. [26]

      [26] X. Y. Wang, D. H. Pan, M. Guo, M. He, P. Y. Niu, R. F. Li, Mater. Lett., 2013, 97, 27.

    27. [27]

      [27] Q. P. Sun, Y. Zheng, Z. H. Li, Y. Zheng, Y. H. Xiao, G. H. Cai, K. M. Wei, Phys. Chem. Chem. Phys., 2013, 15, 5670.

    28. [28]

      [28] Q. P. Sun, Y. Zheng, Y. Zheng, Y. H. Xiao, G. H. Cai, K. M. Wei, Scrip. Mater., 2011, 65, 1026.

    29. [29]

      [29] Q. Yuan, H. H. Duan, L. L. Li, Z. X. Li, W. T. Duan, L. S. Zhang, W. G. Song, C. H. Yan, Adv. Mater., 2010, 22, 1475.

    30. [30]

      [30] D. Shee, A. Sayari, Appl. Catal. A, 2010, 389, 155.

    31. [31]

      [31] R. Y. Liu, M. H. Yang, C. J. Huang, W. Z. Weng, H. L. Wan, Chin. J. Catal., 2013, 34, 146.

    32. [32]

      [32] H. Q. Jiang, H. Bongard, W. Schmidt, F. Schüth, Microporous Mesoporous Mater., 2012, 164, 3.

    33. [33]

      [33] Y. F. Zhu, X. Kong, X. Q. Li, G. Q. Ding, Y. L. Zhu, Y. W. Li, ACS Catal., 2014, 4, 3612.

    34. [34]

      [34] L. L. Xu, H. L. Song, L. J. Chou, Catal. Sci. Technol., 2011, 1, 1032.

    35. [35]

      [35] K. Tao, L. Shi, Q. X. Ma, D. Wang, C. Y. Zeng, C. L. Kong, M. B. Wu, L. Chen, S. H. Zhou, Y. B. Hu, N. Tsubaki, Chem. Eng. J., 2013, 221, 25.

    36. [36]

      [36] X. Huang, N. N. Sun, G. X. Xue, C. Z. Wang, H. J. Zhan, N. Zhao, F. K. Xiao, W. Wei, Y. H. Sun, RSC Adv., 2015, 5, 21090.

    37. [37]

      [37] L. L. Xu, H. L. Song, L. J. Chou, Appl. Catal. B, 2011, 108-109, 177.

    38. [38]

      [38] W. H. Shen, H. Momoi, K. Komatsubara, T. Saito, A. Yoshida, S. Naito, Catal. Today, 2011, 171, 150.

    39. [39]

      [39] L. L. Xu, H. L. Song, L. J. Chou, ACS Catal., 2012, 2, 1331.

    40. [40]

      [40] L. L. Xu, Z. C. Miao, H. L. Song, L. J. Chou, Int. J. Hydrogen Energy, 2014, 39, 3253.

    41. [41]

      [41] N. Wang, K. Shen, L. H. Huang, X. P. Yu, W. Z. Qian, W. Chu, ACS Catal., 2013, 3, 1638.

    42. [42]

      [42] N. Wang, Z. X. Xu, J. Deng, K. Shen, X. P. Yu, W. Z. Qian, W. Chu, F. Wei, ChemCatChem, 2014, 6, 1470.

    43. [43]

      [43] S. B. Cao, A. H. Chen, Y. B. Zhao, Y. L. Lu, Nanoscale, 2015, 7, 5612.

    44. [44]

      [44] J. Horiguchi, Y. Kobayashi, S. Kobayashi, Y. Yamazaki, K. Omata, D. Nagao, M Konno, M. Yamada, Appl. Catal. A, 2011, 392, 86.

    45. [45]

      [45] Y. J. Bang, S. J. Han, J. G. Seo, M. H. Youn, J. H. Song, I. K. Song, Int. J. Hydrogen Energy, 2012, 37, 17967.

    46. [46]

      [46] S. J. Han, Y. Bang, J. Yoo, S. Park, K. H. Kang, J. H .Choi, J. W. Song, I. K. Song, Int. J. Hydrogen Energy, 2014, 39, 10445.

    47. [47]

      [47] W. H. Shen, K. Komatsubara, T. Hagiyama, A. Yoshida, S. Naito, Chem. Commun., 2009, 6490.

    48. [48]

      [48] Y. Wang, S. H. Xie, B. Yue, S. J. Feng, H. Y. He, Chin. J. Catal., 2010, 31, 1054.

    49. [49]

      [49] Y. J. Wang, M. N. Guo, J. Q. Lu, M. F. Luo, Chin. J. Catal., 2011, 32, 1496.

    50. [50]

      [50] L. L. Xu, H. H. Zhao, H. L. Song, L. J. Chou, Int. J. Hydrogen Energy, 2012, 37, 7497.

    51. [51]

      [51] C. M. A. Parlett, L. J. Durndell, K. Wilson, D. W. Bruce, N. S. Hondow, A. F. Lee, Catal. Commun., 2014, 44, 40.

    52. [52]

      [52] L. L. Pérez, C. Alvarez-Galván, V. Zarubina, B. O. Figueiredo Fernandes, I. Melián-Cabrera, CrystEngComm, 2014, 16, 6775.

    53. [53]

      [53] A. H. Chen, T. Miyao, K. Higashiyama, H. Yamashita, M. Watanabe, Angew. Chem. Int. Ed., 2010, 49, 9895.

    54. [54]

      [54] H. Tan, K. Li, S. Sioud, D. Cha, M. H. Amad, M. N. Hedhili, Z. A. Al-Talla, Catal. Commun., 2012, 26, 248.

    55. [55]

      [55] R. D. Zhang, P. X. Li, N. Liu, W. Yang, X. D. Wang, R. Cui, B. H. Chen, Catal. Today, 2013, 216, 169.

    56. [56]

      [56] L. L. Xu, H. L. Song, L. J. Chou, Int. J. Hydrogen Energy, 2013, 38, 7307.

    57. [57]

      [57] L. L. Xu, Z. C. Miao, H. L. Song, W. Chen, L. J. Chou, Catal. Sci. Technol., 2014, 4, 1759.

    58. [58]

      [58] S. J. Zhou, Y. M. Zhou, J. J. Shi, Y. W. Zhang, X. L. Sheng, Z. W. Zhang, J. Mater. Sci., 2015, 50, 3984.

    59. [59]

      [59] Q. Liu, J. J. Gao, F. N. Gu, X. P. Lu, Y. J. Liu, H. F. Li, Z. Y. Zhong, B. Liu, G. W. Xu, F. B. Su, J. Catal., 2015, 326, 127.

    60. [60]

      [60] A. Bueno-López, I. Such-Basáñez, C. S. M. de Lecea, J. Catal., 2006, 244, 102.

    61. [61]

      [61] J. Oi, A. Obuchi, G. R. Bamwenda, A. Ogata, H. Yagita, S. Kushiyama, K. Mizuno, Appl. Catal. B, 1997, 12, 277.

    62. [62]

      [62] Y. F. Han, F. X. Chen, Z. Y. Zhong, K. Ramesh, L. W. Chen, E. Widjaja, J. Phys. Chem. B, 2006, 110, 24450.

    63. [63]

      [63] Y. P. Huang, Z. Y. Liang, Y. E. Miao, T. X. Liu, ChemNanoMat, 2015, 1, 159.

    64. [64]

      [64] H. D. Liu, J. L. Zhang, D. D. Xu, L. H. Huang, S. Z. Tan, W. J. Mai, J. Solid State Electrochem., 2015, 19, 135.

    65. [65]

      [65] M. Salavati-Niasari, M. Farhadi-Khouzani, F. Davar, J. Sol-Gel Sci. Technol., 2009, 52, 321.

    66. [66]

      [66] N. Srisawad, W. Chaitree, O. Mekasuwandumrong, P. Praserthdam, J. Panpranot, J. Nanomater., 2012, 108369.

    67. [67]

      [67] F. Tielens, M Calatayud, R Franco, J M Recio, J Perez-Ramirez, C. Minot, J. Phys. Chem. B, 2006, 110, 988.

    68. [68]

      [68] Y. Xiong, X. J. Yao, C. J. Tang, L. Zhang, Y. Cao, Y. Deng, F. Gao, L.Dong, Catal. Sci. Technol., 2014, 4, 4416.

    69. [69]

      [69] C. He, Y. K. Yu, L. Yue, N. L. Qiao, J. J. Li, Q. Shen, W. J. Yu, J. S. Chen, Z. P. Hao, Appl. Catal. B, 2014, 147, 156.

    70. [70]

      [70] P Nachimuthu, Y J Kim, S V N T Kuchibhatla, Z Q Yu, W Jiang, M H Engelhard, V. Shutthanandan, J. Szanyi, S. Thevuthasan, J. Phys. Chem. C, 2009, 113, 14324.

    71. [71]

      [71] Y. Ren, Z. Ma, S. Dai, Materials, 2014, 7, 3547.

    72. [72]

      [72] Y. P. Cai, H G Stenger Jr, C. E. Lyman, J. Catal., 1996, 161, 123.

    73. [73]

      [73] V. R. Pérez, M. Á. V. Beltrán, Q. G. He, Q. Wang, C. S. M. de Lecea, A. B. López, Catal. Commun., 2013, 33, 47.

    74. [74]

      [74] S. Parres-Esclapez, M. J. Illán-Gómez, C. S. M. de Lecea, A. Bueno-López, Appl. Catal. B, 2010, 96, 370.

    75. [75]

      [75] L. Chmielarz, P. Kuśtrowski, M. Drozdek, M. Rutkowska, R. Dziembaj, M. Michalik, P. Cool, E. F. Vansant, J. Porous Mater., 2011, 18, 483.

    76. [76]

      [76] M. Hussain, P. Akhter, D. Fino, N. Russo, J. Environ. Chem. Eng., 2013, 1, 164.

    77. [77]

      [77] A. Bueno-López, I. Such-Basáñez, C. S. M. de Lecea, J. Catal., 2006, 244, 102.

    78. [78]

      [78] Y. Lin, T. Meng, Z. Ma, J. Ind. Eng. Chem., 2015, 28, 138.

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    11. [11]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    16. [16]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

Metrics
  • PDF Downloads(0)
  • Abstract views(646)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return