Citation:
Huanhuan Liu, Aiping Jia, Mengfei Luo, Jiqing Lu. Enhanced CO oxidation over potassium-promoted Pt/Al2O3 catalysts: Kinetic and infrared spectroscopic study[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1976-1986.
doi:
10.1016/S1872-2067(15)60950-0
-
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 kJ/mol for 0.42K-2.0Pt/Al2O3 and 63.6 kJ/mol for 2.0Pt/Al2O3). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.
-
Keywords:
- CO oxidation,
- Potassium,
- Kinetics,
- Pt/Al2O3 catalyst,
- Promoting effect
-
-
-
[1]
[1] Schryer D R, Upchurch B T, Sidney B D, Brown K G, Hoflund G B, Herz R K. J Catal, 1991, 130: 314
-
[2]
[2] Yuan Y Z, Kozlova A P, Asakura K, Wan H L, Tsai K, Iwasawa Y. J Catal, 1997, 170: 191
-
[3]
[3] Haruta M, Kobayashi T, Sano H, Yamada N. Chem Lett, 1987, 16: 405
-
[4]
[4] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J, Delmon B. J Catal, 1993, 144: 175
-
[5]
[5] Santos V P, Carabineiro S A C, Bakker J J W, Soares O S G P, Chen X, Pereira M F R, Orfao J J M, Figueiredo J L, Gascon J, Kapteijn F. J Catal, 2014, 309: 58
-
[6]
[6] Tost A, Widmann D, Behm R J. J Catal, 2009, 266: 299
-
[7]
[7] Maeda Y, Iizuka Y, Kohyama M. J Am Chem Soc, 2013, 135: 906
-
[8]
[8] Fujitani T, Nakamura I. Angew Chem Int Ed, 2011, 50: 10144
-
[9]
[9] Wu Z L, Jiang D E, Mann A K P, Mullins D R, Qiao Z A, Allard L F, Zeng C J, Jin R C, Overbury S H. J Am Chem Soc, 2014, 136: 6111
-
[10]
[10] Schryer D R, Upchurch B T, Van Norman J D, Brown K G, Schryer J. J Catal, 1990, 122: 193
-
[11]
[11] McClure S M, Goodman D W. Chem Phys Lett, 2009, 469: 1
-
[12]
[12] Liu H H, Wang Y, Jia A P, Wang S Y, Luo M F, Lu J Q. Appl Surf Sci, 2014, 314: 725
-
[13]
[13] Xu H, Fu Q, Bao X H. Chin J Catal (徐红, 傅强, 包信和. 催化学报), 2013, 34: 2029
-
[14]
[14] Fernandez-Garcia M, Martinez-Arias A, Salamanca L N, Coronado J M, Anderson J A, Conesa J C, Soria J. J Catal, 1999, 187: 474
-
[15]
[15] Faticanti M, Cioffi N, De Rossi S, Ditaranto N, Porta P, Sabbatini L, Bleve-Zacheo T. Appl Catal B, 2005, 60: 73
-
[16]
[16] Meng L, Jia A P, Lu J Q, Luo L F, Huang W X, Luo M F. J Phys Chem C, 2011, 115: 19789
-
[17]
[17] Liu W, Flytzani-Stephanopoulos M. J Catal, 1995, 153: 317
-
[18]
[18] Martinez-Arias A, Fernandez-Garcia M, Galvez O, Coronado J M, Anderson J A, Conesa J C, Soria J, Munuera G. J Catal, 2000, 195: 207
-
[19]
[19] Luo M F, Ma J M, Lu J Q, Song Y P, Wang Y. J. J Catal, 207, 246: 52
-
[20]
[20] Jia A P, Hu G S, Meng L, Xie Y L, Lu J Q, Luo M F. J Catal, 2012, 289: 199
-
[21]
[21] Sun J F, Zhang L, Ge C Y, Tang C J, Dong L. Chin J Catal (孙敬方, 张雷, 葛成艳, 汤常金, 董林. 催化学报), 2014, 35: 1347
-
[22]
[22] Chen G X, Li Q L, Wei Y C, Fang W P, Yang Y Q. Chin J Catal (陈国星, 李巧灵, 魏育才, 方维平, 杨富泉. 催化学报), 2013, 34: 322
-
[23]
[23] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458: 746
-
[24]
[24] Yu Y B, Zhao J J, Han X, Zhang Y, Qin X B, Wang B Y. Chin J Catal (余立波, 赵娇娇, 韩雪, 张燕, 秦秀波, 王宝义. 催化学报), 2013, 34: 283
-
[25]
[25] Qadir K, Kim S H, Kim S M, Ha H, Park J Y. J Phys Chem C, 2012, 116: 24054
-
[26]
[26] Liu L Q, Zhou F, Wang L G, Qi X J, Shi F, Deng Y Q. J Catal, 2010, 274: 1
-
[27]
[27] Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nature Chem, 2011, 3: 634
-
[28]
[28] Kuriyama M, Tanaka H, Ito S, Kubota T, Miyao T, Naito S, Tomishige K, Kunimori K. J Catal, 2007, 252: 39
-
[29]
[29] Minemura Y, Kuriyama M, Ito S, Tomishige K, Kunimori K. Catal Commun, 2006, 7: 623
-
[30]
[30] Yu X J, Yu W, Li H L, Tu S T, Han Y F. Appl Catal B, 2013, 140-141: 588
-
[31]
[31] Zhu X L, Hoang T, Lobban L L, Mallinson R G. Catal Lett, 2009, 129: 135
-
[32]
[32] Zhai Y P, Pierre D, Si R, Deng W L, Ferrin P, Nilekar A U, Peng G W, Herron J A, Bell D C, Saltsburg H, Mavrikakis M, Flytzani-Stephanopoulos M. Science, 2010, 329: 1633
-
[33]
[33] Pigos J M, Brooks C J, Jacobs G, Davis B H. Appl Catal A, 2007, 319: 47
-
[34]
[34] Zhang C B, Liu F D, Zhai Y P, Ariga H, Yi N, Liu Y Q, Asakura K, Flytzani-Stephanopoulos M, He H. Angew Chem Int Ed, 2012, 51: 9628
-
[35]
[35] Wang Y, Liu H H, Wang S Y, Luo M F, Lu J Q. J Catal, 2014, 311: 314
-
[36]
[36] Fogler H S. Elements of Chemical Reaction Engineering. 4th Ed. Pearson Education Inc., 2006: 839
-
[37]
[37] Shacham M, Cutlip M B, Elly M. Polymath, Copyright 2006. http://www.polymath-software.com
-
[38]
[38] García-Dieguez M, Pieta I S, Herrera M C, Larrubia M A, Malpartida I, Alemany L J. Catal Today, 2010, 149: 380
-
[39]
[39] Corro G, Cano C, Fierro J L G. J Mol Catal A, 2010, 315: 35
-
[40]
[40] Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasieczna S. J Catal, 2004, 227: 282
-
[41]
[41] Allian A D, Takanabe K, Fujdala K L, Hao X H, Truex T J, Cai J, Buda C, Neurock M, Iglesia E. J Am Chem Soc, 2011, 133: 4498
-
[42]
[42] Gracia F J, Bollmann L, Wolf E E, Miller J T, Kropf A.J. J Catal, 2003, 220: 382
-
[43]
[43] Li N, Chen Q Y, Luo L F, Huang W X, Luo M F, Hu G S, Lu J. Q. Appl Catal B, 2013, 142-143: 523
-
[44]
[44] Bourane A, Bianchi D. J Catal, 2001, 202: 34
-
[45]
[45] Djéga-Mariadassou G, Boudart M. J Catal, 2003, 216: 89
-
[46]
[46] Derrouiche S, Gravejat P, Bassou B, Bianchi D. Appl Surf Sci, 2007, 253: 5894
-
[47]
[47] Chafik T, Dulaurent O, Gass J L, Bianchi D. J Catal, 1998, 179: 503
-
[48]
[48] Alexeev O S, Chin S Y, Engelhard M H, Ortiz-Soto L, Amiridis M D. J Phys Chem B, 2005, 109: 23430
-
[49]
[49] Xu L S, Ma Y S, Zhang Y L, Jiang Z Q, Huang W X. J Am Chem Soc, 2009, 131: 16366
-
[1]
-
-
-
[1]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[2]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[3]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[4]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[5]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[6]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[7]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[8]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[9]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[10]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[11]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[12]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[13]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[14]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[15]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[16]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[17]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[18]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[19]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[20]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(582)
- HTML views(79)