Citation: Huanhuan Liu, Aiping Jia, Mengfei Luo, Jiqing Lu. Enhanced CO oxidation over potassium-promoted Pt/Al2O3 catalysts: Kinetic and infrared spectroscopic study[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1976-1986. doi: 10.1016/S1872-2067(15)60950-0 shu

Enhanced CO oxidation over potassium-promoted Pt/Al2O3 catalysts: Kinetic and infrared spectroscopic study

  • Corresponding author: Jiqing Lu, 
  • Received Date: 16 May 2015
    Available Online: 28 June 2015

    Fund Project: 国家自然科学基金(21173195). (21173195)

  • A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 kJ/mol for 0.42K-2.0Pt/Al2O3 and 63.6 kJ/mol for 2.0Pt/Al2O3). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.
  • 加载中
    1. [1]

      [1] Schryer D R, Upchurch B T, Sidney B D, Brown K G, Hoflund G B, Herz R K. J Catal, 1991, 130: 314

    2. [2]

      [2] Yuan Y Z, Kozlova A P, Asakura K, Wan H L, Tsai K, Iwasawa Y. J Catal, 1997, 170: 191

    3. [3]

      [3] Haruta M, Kobayashi T, Sano H, Yamada N. Chem Lett, 1987, 16: 405

    4. [4]

      [4] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J, Delmon B. J Catal, 1993, 144: 175

    5. [5]

      [5] Santos V P, Carabineiro S A C, Bakker J J W, Soares O S G P, Chen X, Pereira M F R, Orfao J J M, Figueiredo J L, Gascon J, Kapteijn F. J Catal, 2014, 309: 58

    6. [6]

      [6] Tost A, Widmann D, Behm R J. J Catal, 2009, 266: 299

    7. [7]

      [7] Maeda Y, Iizuka Y, Kohyama M. J Am Chem Soc, 2013, 135: 906

    8. [8]

      [8] Fujitani T, Nakamura I. Angew Chem Int Ed, 2011, 50: 10144

    9. [9]

      [9] Wu Z L, Jiang D E, Mann A K P, Mullins D R, Qiao Z A, Allard L F, Zeng C J, Jin R C, Overbury S H. J Am Chem Soc, 2014, 136: 6111

    10. [10]

      [10] Schryer D R, Upchurch B T, Van Norman J D, Brown K G, Schryer J. J Catal, 1990, 122: 193

    11. [11]

      [11] McClure S M, Goodman D W. Chem Phys Lett, 2009, 469: 1

    12. [12]

      [12] Liu H H, Wang Y, Jia A P, Wang S Y, Luo M F, Lu J Q. Appl Surf Sci, 2014, 314: 725

    13. [13]

      [13] Xu H, Fu Q, Bao X H. Chin J Catal (徐红, 傅强, 包信和. 催化学报), 2013, 34: 2029

    14. [14]

      [14] Fernandez-Garcia M, Martinez-Arias A, Salamanca L N, Coronado J M, Anderson J A, Conesa J C, Soria J. J Catal, 1999, 187: 474

    15. [15]

      [15] Faticanti M, Cioffi N, De Rossi S, Ditaranto N, Porta P, Sabbatini L, Bleve-Zacheo T. Appl Catal B, 2005, 60: 73

    16. [16]

      [16] Meng L, Jia A P, Lu J Q, Luo L F, Huang W X, Luo M F. J Phys Chem C, 2011, 115: 19789

    17. [17]

      [17] Liu W, Flytzani-Stephanopoulos M. J Catal, 1995, 153: 317

    18. [18]

      [18] Martinez-Arias A, Fernandez-Garcia M, Galvez O, Coronado J M, Anderson J A, Conesa J C, Soria J, Munuera G. J Catal, 2000, 195: 207

    19. [19]

      [19] Luo M F, Ma J M, Lu J Q, Song Y P, Wang Y. J. J Catal, 207, 246: 52

    20. [20]

      [20] Jia A P, Hu G S, Meng L, Xie Y L, Lu J Q, Luo M F. J Catal, 2012, 289: 199

    21. [21]

      [21] Sun J F, Zhang L, Ge C Y, Tang C J, Dong L. Chin J Catal (孙敬方, 张雷, 葛成艳, 汤常金, 董林. 催化学报), 2014, 35: 1347

    22. [22]

      [22] Chen G X, Li Q L, Wei Y C, Fang W P, Yang Y Q. Chin J Catal (陈国星, 李巧灵, 魏育才, 方维平, 杨富泉. 催化学报), 2013, 34: 322

    23. [23]

      [23] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458: 746

    24. [24]

      [24] Yu Y B, Zhao J J, Han X, Zhang Y, Qin X B, Wang B Y. Chin J Catal (余立波, 赵娇娇, 韩雪, 张燕, 秦秀波, 王宝义. 催化学报), 2013, 34: 283

    25. [25]

      [25] Qadir K, Kim S H, Kim S M, Ha H, Park J Y. J Phys Chem C, 2012, 116: 24054

    26. [26]

      [26] Liu L Q, Zhou F, Wang L G, Qi X J, Shi F, Deng Y Q. J Catal, 2010, 274: 1

    27. [27]

      [27] Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nature Chem, 2011, 3: 634

    28. [28]

      [28] Kuriyama M, Tanaka H, Ito S, Kubota T, Miyao T, Naito S, Tomishige K, Kunimori K. J Catal, 2007, 252: 39

    29. [29]

      [29] Minemura Y, Kuriyama M, Ito S, Tomishige K, Kunimori K. Catal Commun, 2006, 7: 623

    30. [30]

      [30] Yu X J, Yu W, Li H L, Tu S T, Han Y F. Appl Catal B, 2013, 140-141: 588

    31. [31]

      [31] Zhu X L, Hoang T, Lobban L L, Mallinson R G. Catal Lett, 2009, 129: 135

    32. [32]

      [32] Zhai Y P, Pierre D, Si R, Deng W L, Ferrin P, Nilekar A U, Peng G W, Herron J A, Bell D C, Saltsburg H, Mavrikakis M, Flytzani-Stephanopoulos M. Science, 2010, 329: 1633

    33. [33]

      [33] Pigos J M, Brooks C J, Jacobs G, Davis B H. Appl Catal A, 2007, 319: 47

    34. [34]

      [34] Zhang C B, Liu F D, Zhai Y P, Ariga H, Yi N, Liu Y Q, Asakura K, Flytzani-Stephanopoulos M, He H. Angew Chem Int Ed, 2012, 51: 9628

    35. [35]

      [35] Wang Y, Liu H H, Wang S Y, Luo M F, Lu J Q. J Catal, 2014, 311: 314

    36. [36]

      [36] Fogler H S. Elements of Chemical Reaction Engineering. 4th Ed. Pearson Education Inc., 2006: 839

    37. [37]

      [37] Shacham M, Cutlip M B, Elly M. Polymath, Copyright 2006. http://www.polymath-software.com

    38. [38]

      [38] García-Dieguez M, Pieta I S, Herrera M C, Larrubia M A, Malpartida I, Alemany L J. Catal Today, 2010, 149: 380

    39. [39]

      [39] Corro G, Cano C, Fierro J L G. J Mol Catal A, 2010, 315: 35

    40. [40]

      [40] Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasieczna S. J Catal, 2004, 227: 282

    41. [41]

      [41] Allian A D, Takanabe K, Fujdala K L, Hao X H, Truex T J, Cai J, Buda C, Neurock M, Iglesia E. J Am Chem Soc, 2011, 133: 4498

    42. [42]

      [42] Gracia F J, Bollmann L, Wolf E E, Miller J T, Kropf A.J. J Catal, 2003, 220: 382

    43. [43]

      [43] Li N, Chen Q Y, Luo L F, Huang W X, Luo M F, Hu G S, Lu J. Q. Appl Catal B, 2013, 142-143: 523

    44. [44]

      [44] Bourane A, Bianchi D. J Catal, 2001, 202: 34

    45. [45]

      [45] Djéga-Mariadassou G, Boudart M. J Catal, 2003, 216: 89

    46. [46]

      [46] Derrouiche S, Gravejat P, Bassou B, Bianchi D. Appl Surf Sci, 2007, 253: 5894

    47. [47]

      [47] Chafik T, Dulaurent O, Gass J L, Bianchi D. J Catal, 1998, 179: 503

    48. [48]

      [48] Alexeev O S, Chin S Y, Engelhard M H, Ortiz-Soto L, Amiridis M D. J Phys Chem B, 2005, 109: 23430

    49. [49]

      [49] Xu L S, Ma Y S, Zhang Y L, Jiang Z Q, Huang W X. J Am Chem Soc, 2009, 131: 16366

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

Metrics
  • PDF Downloads(0)
  • Abstract views(583)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return