Citation: Lei Shi, Zhen-Hao Hu, Gao-Ming Deng, Wen-Cui Li. Carbon monoxide oxidation on copper manganese oxides prepared by selective etching with ammonia[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1920-1927. doi: 10.1016/S1872-2067(15)60947-0 shu

Carbon monoxide oxidation on copper manganese oxides prepared by selective etching with ammonia

  • Corresponding author: Wen-Cui Li, 
  • Received Date: 7 May 2015
    Available Online: 7 July 2015

    Fund Project: 国家重点基础研究发展计划(973计划, 2013CB934104) (973计划, 2013CB934104) 中国博士后科学基金(2014M560202). (2014M560202)

  • A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction, and O2 temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the manganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The O2 temperature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.
  • 加载中
    1. [1]

      [1] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J, Delmon B. J Catal, 1993, 144: 175

    2. [2]

      [2] Royer S, Duprez D. ChemCatChem, 2011, 3: 24

    3. [3]

      [3] An A F, Lu A H, Sun Q, Wang J, Li W C. Gold Bull, 2011, 44: 217

    4. [4]

      [4] Zhang R R, Ren L H, Lu A H, Li W C. Catal Commun, 2011, 13: 18

    5. [5]

      [5] Haruta M, Kobayashi T, Sano H, Yamada N. Chem Lett, 1987: 405

    6. [6]

      [6] Santra A K, Goodman D W. Electrochim Acta, 2002, 47: 3595

    7. [7]

      [7] Wang J, Lu A H, Li M R, Zhang W P, Chen Y S, Tian D X, Li W C. ACS Nano, 2013, 7: 4902

    8. [8]

      [8] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458: 746

    9. [9]

      [9] Frey K, Iablokov V, Sáfrán G, Osán J, Sajo I, Szukiewicz R, Chenakin S, Kruse N. J Catal, 2012, 287: 30

    10. [10]

      [10] Pillai U R, Deevi S. Appl Catal B, 2006, 64: 146

    11. [11]

      [11] Jones C, Taylor S H, Burrows A, Crudace M J, Kiely C J, Hutchings G J. Chem Commun, 2008: 1707

    12. [12]

      [12] Cao J L, Wang Y, Yu X L, Wang S R, Wu S H, Yuan Z Y. Appl Catal B, 2008, 79: 26

    13. [13]

      [13] Chen M S, Goodman D W. Science, 2004, 306: 252

    14. [14]

      [14] Hutchings G J, Mirzaei A A, Joyner R W, Siddiqui M R H, Taylor S H. Appl Catal A, 1998, 166: 143

    15. [15]

      [15] Jones C, Cole K J, Taylor S H, Crudace M J, Hutchings G J. J Mol Catal A, 2009, 305: 121

    16. [16]

      [16] Buciuman F C, Patcas F, Hahn T. Chem Eng Process, 1999, 38: 563

    17. [17]

      [17] Njagi E C, Chen C H, Genuino H, Galindo H, Huang H, Suib S L. Appl Catal B, 2010, 99: 103

    18. [18]

      [18] Kanungo S B. J Catal, 1979, 58: 419

    19. [19]

      [19] Hutchings G J, Mirzaei A A, Joyner R W, Siddiqui M R H, Taylor S H. Catal Lett, 1996, 42: 21

    20. [20]

      [20] Chen H, Tong X L, Li Y D. Appl Catal A, 2009, 370: 59

    21. [21]

      [21] Li D, Yu Q, Li S S, Wan H Q, Liu L J, Qi L, Liu B, Gao F, Dong L, Chen Y. Chem Eur J, 2011, 17: 5668

    22. [22]

      [22] Hasegawa Y, Fukumoto K, Ishima T, Yamamoto H, Sano M, Miyake T. Appl Catal B, 2009, 89: 420

    23. [23]

      [23] Tang Z R, Jones C D, Aldridge J K W, Davies T E, Bartley J K, Carley A F, Taylor S H, Allix M, Dickinson C, Rosseinsky M J, Claridge J B, Xu Z L, Crudace M J, Hutchings G J. ChemCatChem, 2009, 1: 247

    24. [24]

      [24] Morgan K, Cole K J, Goguet A, Hardacre C, Hutchings G J, Maguire N, Shekhtman S O, Taylor S H. J Catal, 2010, 276: 38

    25. [25]

      [25] Cai L N, Guo Y, Lu A H, Branton P, Li W C. J Mol Catal A, 2012, 360: 35

    26. [26]

      [26] Li M, Wang D H, Shi X C, Zhang Z T, Dong T X. Sep Purif Technol, 2007, 57: 147

    27. [27]

      [27] Mirzaei A A, Shaterian H R, Habibi M, Hutchings G J, Taylor S H. Appl Catal A, 2003, 253: 499

    28. [28]

      [28] Cai L N, Hu Z H, Branton P, Li W C. Chin J Catal (蔡丽娜, 胡臻皓, Branton P, 李文翠. 催化学报), 2014, 35: 159

    29. [29]

      [29] Srinivasan K, Subrahmanya R S. J Electroanal Chem Interf Electrochem, 1971, 31: 233

    30. [30]

      [30] Lipkowski J, Galus Z. J Electroanal Chem Interf Electrochem, 1973, 48: 337

    31. [31]

      [31] Cole K J, Carley A F, Crudace M J, Clarke M, Taylor S H, Hutchings G J. Catal Lett, 2010, 138: 143

    32. [32]

      [32] Zhang X B, Ma K Y, Zhang L H, Yong G P, Dai Y, Liu S M. Chin J Chem Phys, 2011, 24: 97

    33. [33]

      [33] Koleva V, Stoilova D, Mehandjiev D. J Solid State Chem, 1997, 133: 416

    34. [34]

      [34] Mirzaei A A, Shaterian H R, Kaykhaii M. Appl Surf Sci, 2005, 239: 246

    35. [35]

      [35] Morales M R, Barbero B P, Cadús L E. Appl Catal B, 2006, 67: 229

    36. [36]

      [36] Waskowska A, Gerward L, Olsen J S, Steenstrup S, Talik E. J Phys: Condens Matter, 2001, 13: 2549

    37. [37]

      [37] Liu Q, Wang L C, Chen M, Liu Y M, Cao Y, He H Y, Fan K N. Catal Lett, 2008, 121: 144

    38. [38]

      [38] Radhakrishnan R, Oyama S T, Chem J G, Asakura K. J Phys Chem B, 2001, 105: 4245

    39. [39]

      [39] Trawczyński J, Bielak B, Miśta W. Appl Catal B, 2005, 55: 277

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(0)
  • Abstract views(443)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return