Citation:
Licheng Li, Kangzhong Shi, Rui Tu, Qi Qian, Dong Li, Zhuhong Yang, Xiaohua Lu. Black TiO2(B)/anatase bicrystalline TiO2-x nanofibers with enhanced photocatalytic performance[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1943-1948.
doi:
10.1016/S1872-2067(15)60946-9
-
Black TiO2(B)/anatase bicrystalline TiO2-x nanofibers were synthesized from a porous titanate derivative by calcination in H2, and were characterized using field-emission scanning electron microscopy, Raman spectroscopy, N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, ultraviolet-visible diffuse reflection spectroscopy and photoluminescence measurements. Characterization results showed that no Ti3+ was present on the surface of black bicrystalline TiO2-x and oxygen vacancies were distributed in the bulk of both TiO2(B) and anatase phases. The O/Ti atom stoichiometric ratio of black bicrystalline TiO2-x was estimated to be 1.97 from the difference of mass loss between black bicrystalline TiO2-x and white bicrystalline TiO2 without oxygen vacancies. The photocatalytic activity of black bicrystalline TiO2-x was 4.2 times higher than that of white bicrystalline TiO2 and 10.5 times higher than that of anatase TiO2. The high photocatalytic activity of black bicrystalline TiO2-x was attributed to its effective separation of electrons and holes, which may be related to the effects of both bicrystalline structure and oxygen vacancies. Black bicrystalline TiO2-x also exhibited good photocatalytic activity after recycling ten times. The black bicrystalline TiO2-x nanofibers show potential for use in environmental and energy applications.
-
Keywords:
- Black titania,
- Bicrystalline,
- Photocatalysis,
- Oxygen vacancy
-
-
-
[1]
[1] Chen X B, Mao S S. Chem Rev, 2007, 107: 2891
-
[2]
[2] Ma Y, Wang X L, Jia Y S, Chen X B, Han H X, Li C. Chem Rev, 2014, 114: 9987
-
[3]
[3] Pang Y L, Lim S, Ong H C, Chong W T. Appl Catal A, 2014, 481: 127
-
[4]
[4] Li W, Liu C, Zhou Y X, Bai Y, Feng X, Yang Z H, Lu L H, Lu X H, Chan K Y. J Phys Chem C, 2008, 112: 20539
-
[5]
[5] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Angew Chem Int Ed, 2008, 47: 1766
-
[6]
[6] Yang D J, Liu H W, Zheng Z F, Yuan Y, Zhao J C, Waclawik E R, Ke X B, Zhu H Y. J Am Chem Soc, 2009, 131: 17885
-
[7]
[7] Mohamed M M, Asghar B H M, Muathen H A. Catal Commun, 2012, 28: 58
-
[8]
[8] Zhu J F, Chen F, Zhang J L, Chen H J, Anpo M. J Photochem Photobiol A, 2006, 180: 196
-
[9]
[9] Wongkasemjit S, Piwnuan C, Maneesuwan H, Chaisuwan T, Luengnaruemitchai A. Catal Commun, 2013, 33: 51
-
[10]
[10] Wu J C S, Chen C H. J Photochem Photobiol A, 2004, 163: 509
-
[11]
[11] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269
-
[12]
[12] Li X, Zhu J, Li H X. Catal Commun, 2012, 24: 20
-
[13]
[13] Dong F, Zhao W R, Wu Z B. Nanotechnology, 2008, 19: 365607
-
[14]
[14] Chen X B, Liu L, Peter Y Y, Mao S S. Science, 2011, 331: 746
-
[15]
[15] Wang H N, Lin T Q, Zhu G L, Yin H, Lu X J, Li Y T, Huang F Q. Catal Commun, 2015, 60: 55
-
[16]
[16] Cao Y Q, He T, Chen Y M, Cao Y. J Phys Chem C, 2010, 114: 3627
-
[17]
[17] Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T. J Am Chem Soc, 2012, 134: 6309
-
[18]
[18] Chen X B, Shen S H, Guo L J, Mao S S. Chem Rev, 2010, 110: 6503
-
[19]
[19] He M, Lu X H, Feng X, Yu L, Yang Z H. Chem Commun, 2004: 2202
-
[20]
[20] Kolen'ko Y V, Burukhin A A, Churagulov B R, Oleynikov N N. Mater Lett, 2003, 57: 1124
-
[21]
[21] Beuvier T, Richard-Plouet M, Brohan L. J Phys Chem C, 2009, 113: 13703
-
[22]
[22] Dong J Y, Han J, Liu Y S, Nakajima A, Matsushita S, Wei S H, Gao W. ACS Appl Mater Int, 2014, 6: 1385
-
[23]
[23] Wang W, Ni Y R, Lu C H, Xu Z Z. RSC Adv, 2012, 2: 8286
-
[24]
[24] Chen B, Beach J A, Maurya D, Moore R B, Priya S. RSC Adv, 2014, 4: 29443
-
[25]
[25] Pei Z X, Ding L Y, Feng W H, Weng S X, Liu P. Phys Chem Chem Phys, 2014, 16: 21876
-
[26]
[26] Cheng H, Selloni A. Phys Rev B, 2009, 79: 092101
-
[27]
[27] Li L C, Zhu Y D, Lu X H, Wei M J, Zhuang W, Yang Z H, Feng X. Chem Commun, 2012, 48: 11525
-
[28]
[28] Zhou W J, Gai L G, Hu P G, Cui J J, Liu X Y, Wang D Z, Li G H, Jiang H D, Liu D, Liu H, Wang J Y. Cryst Eng Commun, 2011, 13: 6643
-
[29]
[29] Li W, Bai Y, Liu C, Yang Z H, Feng X, Lu X H, Laak N V D, Chan K Y. Environ Sci Technol, 2008, 112: 20539
-
[30]
[30] Serpone N, Lawless D, Khairutdinov R. J Phys Chem, 1995, 99: 16646
-
[31]
[31] Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi C L, Psaro R, Dal Santo V. J Am Chem Soc, 2012, 134: 7600
-
[32]
[32] Wheeler D A, Ling Y C, Dillon R J, Fitzmorris R C, Dudzik C G, Zavodivker L, Rajh T, Dimitrijevic N M, Millhauser G, Bardeen C, Li Y, Zhang J Z. J Phys Chem C, 2013, 117: 26821
-
[1]
-
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[3]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[4]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[5]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
-
[6]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[7]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[8]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[9]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[10]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[11]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[12]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[13]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[14]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[15]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[16]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[17]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[18]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[19]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[20]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(393)
- HTML views(4)