Citation: Licheng Li, Kangzhong Shi, Rui Tu, Qi Qian, Dong Li, Zhuhong Yang, Xiaohua Lu. Black TiO2(B)/anatase bicrystalline TiO2-x nanofibers with enhanced photocatalytic performance[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1943-1948. doi: 10.1016/S1872-2067(15)60946-9 shu

Black TiO2(B)/anatase bicrystalline TiO2-x nanofibers with enhanced photocatalytic performance

  • Corresponding author: Licheng Li, 
  • Received Date: 24 April 2015
    Available Online: 3 July 2015

    Fund Project: 国家自然科学基金(21406118, 91434109, 91334202) (21406118, 91434109, 91334202) 南京林业大学高学历人才基金项目(GXL2014036) (GXL2014036) 科技副总(企业创新岗)特聘专家项目 (企业创新岗)

  • Black TiO2(B)/anatase bicrystalline TiO2-x nanofibers were synthesized from a porous titanate derivative by calcination in H2, and were characterized using field-emission scanning electron microscopy, Raman spectroscopy, N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, ultraviolet-visible diffuse reflection spectroscopy and photoluminescence measurements. Characterization results showed that no Ti3+ was present on the surface of black bicrystalline TiO2-x and oxygen vacancies were distributed in the bulk of both TiO2(B) and anatase phases. The O/Ti atom stoichiometric ratio of black bicrystalline TiO2-x was estimated to be 1.97 from the difference of mass loss between black bicrystalline TiO2-x and white bicrystalline TiO2 without oxygen vacancies. The photocatalytic activity of black bicrystalline TiO2-x was 4.2 times higher than that of white bicrystalline TiO2 and 10.5 times higher than that of anatase TiO2. The high photocatalytic activity of black bicrystalline TiO2-x was attributed to its effective separation of electrons and holes, which may be related to the effects of both bicrystalline structure and oxygen vacancies. Black bicrystalline TiO2-x also exhibited good photocatalytic activity after recycling ten times. The black bicrystalline TiO2-x nanofibers show potential for use in environmental and energy applications.
  • 加载中
    1. [1]

      [1] Chen X B, Mao S S. Chem Rev, 2007, 107: 2891

    2. [2]

      [2] Ma Y, Wang X L, Jia Y S, Chen X B, Han H X, Li C. Chem Rev, 2014, 114: 9987

    3. [3]

      [3] Pang Y L, Lim S, Ong H C, Chong W T. Appl Catal A, 2014, 481: 127

    4. [4]

      [4] Li W, Liu C, Zhou Y X, Bai Y, Feng X, Yang Z H, Lu L H, Lu X H, Chan K Y. J Phys Chem C, 2008, 112: 20539

    5. [5]

      [5] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Angew Chem Int Ed, 2008, 47: 1766

    6. [6]

      [6] Yang D J, Liu H W, Zheng Z F, Yuan Y, Zhao J C, Waclawik E R, Ke X B, Zhu H Y. J Am Chem Soc, 2009, 131: 17885

    7. [7]

      [7] Mohamed M M, Asghar B H M, Muathen H A. Catal Commun, 2012, 28: 58

    8. [8]

      [8] Zhu J F, Chen F, Zhang J L, Chen H J, Anpo M. J Photochem Photobiol A, 2006, 180: 196

    9. [9]

      [9] Wongkasemjit S, Piwnuan C, Maneesuwan H, Chaisuwan T, Luengnaruemitchai A. Catal Commun, 2013, 33: 51

    10. [10]

      [10] Wu J C S, Chen C H. J Photochem Photobiol A, 2004, 163: 509

    11. [11]

      [11] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269

    12. [12]

      [12] Li X, Zhu J, Li H X. Catal Commun, 2012, 24: 20

    13. [13]

      [13] Dong F, Zhao W R, Wu Z B. Nanotechnology, 2008, 19: 365607

    14. [14]

      [14] Chen X B, Liu L, Peter Y Y, Mao S S. Science, 2011, 331: 746

    15. [15]

      [15] Wang H N, Lin T Q, Zhu G L, Yin H, Lu X J, Li Y T, Huang F Q. Catal Commun, 2015, 60: 55

    16. [16]

      [16] Cao Y Q, He T, Chen Y M, Cao Y. J Phys Chem C, 2010, 114: 3627

    17. [17]

      [17] Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T. J Am Chem Soc, 2012, 134: 6309

    18. [18]

      [18] Chen X B, Shen S H, Guo L J, Mao S S. Chem Rev, 2010, 110: 6503

    19. [19]

      [19] He M, Lu X H, Feng X, Yu L, Yang Z H. Chem Commun, 2004: 2202

    20. [20]

      [20] Kolen'ko Y V, Burukhin A A, Churagulov B R, Oleynikov N N. Mater Lett, 2003, 57: 1124

    21. [21]

      [21] Beuvier T, Richard-Plouet M, Brohan L. J Phys Chem C, 2009, 113: 13703

    22. [22]

      [22] Dong J Y, Han J, Liu Y S, Nakajima A, Matsushita S, Wei S H, Gao W. ACS Appl Mater Int, 2014, 6: 1385

    23. [23]

      [23] Wang W, Ni Y R, Lu C H, Xu Z Z. RSC Adv, 2012, 2: 8286

    24. [24]

      [24] Chen B, Beach J A, Maurya D, Moore R B, Priya S. RSC Adv, 2014, 4: 29443

    25. [25]

      [25] Pei Z X, Ding L Y, Feng W H, Weng S X, Liu P. Phys Chem Chem Phys, 2014, 16: 21876

    26. [26]

      [26] Cheng H, Selloni A. Phys Rev B, 2009, 79: 092101

    27. [27]

      [27] Li L C, Zhu Y D, Lu X H, Wei M J, Zhuang W, Yang Z H, Feng X. Chem Commun, 2012, 48: 11525

    28. [28]

      [28] Zhou W J, Gai L G, Hu P G, Cui J J, Liu X Y, Wang D Z, Li G H, Jiang H D, Liu D, Liu H, Wang J Y. Cryst Eng Commun, 2011, 13: 6643

    29. [29]

      [29] Li W, Bai Y, Liu C, Yang Z H, Feng X, Lu X H, Laak N V D, Chan K Y. Environ Sci Technol, 2008, 112: 20539

    30. [30]

      [30] Serpone N, Lawless D, Khairutdinov R. J Phys Chem, 1995, 99: 16646

    31. [31]

      [31] Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi C L, Psaro R, Dal Santo V. J Am Chem Soc, 2012, 134: 7600

    32. [32]

      [32] Wheeler D A, Ling Y C, Dillon R J, Fitzmorris R C, Dudzik C G, Zavodivker L, Rajh T, Dimitrijevic N M, Millhauser G, Bardeen C, Li Y, Zhang J Z. J Phys Chem C, 2013, 117: 26821

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    6. [6]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    7. [7]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(1)
  • Abstract views(393)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return