Citation: Ming Zhou, Hua Yang, Tao Xian, Yang Yang, Yunchuan Zhang. Sonocatalytic activity of LuFeO3 crystallites synthesized via a hydrothermal route[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1987-1994. doi: 10.1016/S1872-2067(15)60941-X shu

Sonocatalytic activity of LuFeO3 crystallites synthesized via a hydrothermal route

  • Corresponding author: Hua Yang, 
  • Received Date: 6 May 2015
    Available Online: 22 June 2015

    Fund Project: 国家自然科学基金(51262018) (51262018) 甘肃省高等学校基本科研业务费专项资金(056003) (056003) 兰州理工大学红柳杰出人才基金(J201205). (J201205)

  • LuFeO3 crystallites of different sizes and morphologies were synthesized via a hydrothermal route. The sonocatalytic properties of the as-synthesized samples were investigated by degrading various organic dyes, including acid orange 7 (AO7), rhodamine B (RhB), methyl orange (MO), and methylene blue (MB), under ultrasonic irradiation, revealing that they exhibit excellent sonocatalytic activity toward the degradation of these dyes. Particularly, the synthesized bar-like particles with lengths of ~3 μm and widths of ~1 μm have the highest sonocatalytic activity, and the degradation percentage of AO7 reaches 89% after 30 min of sonocatalysis. The effects of inorganic anions such as Cl-, NO3-, SO42-, PO43-, and HCO3- on the sonocatalysis efficiency were investigated. Hydroxyl radicals (·OH) detected by fluorimetry using terephthalic acid as a probe molecule were found to be produced over the ultrasonic-irradiated LuFeO3 particles. The addition of ethanol, which acts as a ·OH scavenger, leads to quenching of ·OH radicals and a simultaneous decrease in the dye degradation. This suggests that ·OH is the dominant active species responsible for the dye degradation.
  • 加载中
    1. [1]

      [1] Leong T, Ashokkumar M, Kentish S. Acoust Aust, 2011, 39(2): 54

    2. [2]

      [2] Xu H X, Eddingsaas N C, Suslick K S. J Am Chem Soc, 2009, 131: 6060

    3. [3]

      [3] Juretic H, Montalbo-Lomboy M, Van Leeuwen J, Cooper W J, Grewell D. Ultrason Sonochem, 2015, 22: 600

    4. [4]

      [4] Antonopoulou M, Evgenidou E, Lambropoulou D, Konstantinou I. Water Res, 2014, 53: 215

    5. [5]

      [5] Chave T, Navarro N M, Pochon P, Perkas N, Gedanken A, Nikitenko S I. Catal Today, 2015, 241: 55

    6. [6]

      [6] Zhu L, Jo S B, Ye S, Ullah K, Oh W C. Chin J Catal (催化学报), 2014, 35: 1825

    7. [7]

      [7] Khataee A, Soltani R D C, Karimi A, Joo S W. Ultrason Sonochem, 2015, 23: 219

    8. [8]

      [8] Zhang S N, Tian H F, Zhang S J, Wu X Q, Song L M, Ye J Y, Wei Q W. J Am Ceram Soc, 2013, 96: 3536

    9. [9]

      [9] He P Z, Song L M, Wu X Q, Tian H F, Wei Q W, Ye J Y, Zhang L G, Cui Y Y, Wang Y B. Ultrason Sonochem, 2014, 21: 136

    10. [10]

      [10] Wu Y, Song L M, Zhang S J, Wu X Q, Zhang S N, Tian H F, Ye J Y. Catal Commun, 2013, 37: 14

    11. [11]

      [11] Zhao H, Zhang G M, Zhang Q L. Ultrason Sonochem, 2014, 21: 991

    12. [12]

      [12] Song L M, Li Y M, He P Z, Zhang S J, Wu X Q, Fang S, Shan J J, Sun D L. Ultrason Sonochem, 2014, 21: 1318

    13. [13]

      [13] Zhang K, Oh W C. Bull Korean Chem Soc, 2010, 31: 1589

    14. [14]

      [14] Wang J, Guo B D, Zhang X D, Zhang Z H, Han J T, Wu J. Ultrason Sonochem, 2005, 12: 331

    15. [15]

      [15] White R L. J Appl Phys, 1969, 40: 1061

    16. [16]

      [16] Zhu W K, Pi L, Tan S, Zhang Y H. Appl Phys Lett, 2012, 100: 052407

    17. [17]

      [17] Zhang L, Chen X M. Solid State Commun, 2009, 149: 1317

    18. [18]

      [18] Wang W B, Zhao J, Wang W B, Gai Z, Balke N, Chi M F, Lee H N, Tian W, Zhu L Y, Cheng X M, Keavney D J, Yi J Y, Ward T Z, Snijders P C, Christen H M, Wu W D, Shen J, Xu X S. Phys Rev Lett, 2013, 110: 237601

    19. [19]

      [19] Chowdhury U, Goswami S, Bhattacharya D, Ghosh J, Basu S, Neogi S. Appl Phys Lett, 2014, 105: 052911

    20. [20]

      [20] Adams D J, Amadon B. Phys Rev B, 2009, 79: 115114

    21. [21]

      [21] Zhou M, Yang H, Xian T, Ma J Y, Zhang H M, Feng W J, Wei Z Q, Jiang J L. J Alloys Compd, 2014, 617: 855

    22. [22]

      [22] Zhou M, Yang H, Xian T, Li R S, Zhang H M, Wang X X. J Hazard Mater, 2015, 289: 149

    23. [23]

      [23] Ishibashi K I, Fujishima A, Watanabe T, Hashimoto K. J Photochem Photobiol A, 2000, 134: 139

    24. [24]

      [24] Wang S F, Yang H, Xian T, Liu X Q. Catal Commun, 2011, 12: 625

    25. [25]

      [25] Wang K, Zhang J Y, Lou L P, Yang S Y, Chen Y X. J Photochem Photobiol A, 2004, 165: 201

    26. [26]

      [26] Burns R A, Crittenden J C, Hand D W, Selzer V H, Sutter L L, Salman S R. J Environ Eng, 1999, 125: 77

    27. [27]

      [27] Xian T, Yang H, Di L J, Chen X F, Dai J F. J Sol-Gel Sci Technol, 2013, 66: 324

    28. [28]

      [28] Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes. New York: Plenum Press, 1980. 72

    29. [29]

      [29] Andersen T, Haugen H K, Hotop H. J Phys Chem Ref Data, 1999, 28: 1511

    30. [30]

      [30] Davis V T, Thompson J S. J Phys B, 2001, 34: L433

    31. [31]

      [31] Tachikawa T, Fujitsuka M, Majima T. J Phys Chem C, 2007, 111: 5259

    32. [32]

      [32] Jiang H Y, Cheng K, Lin J. Phys Chem Chem Phys, 2012, 14: 12114

  • 加载中
    1. [1]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    2. [2]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    3. [3]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    10. [10]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    11. [11]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    12. [12]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    15. [15]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    16. [16]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    17. [17]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

Metrics
  • PDF Downloads(0)
  • Abstract views(289)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return