Citation:
Ming Zhou, Hua Yang, Tao Xian, Yang Yang, Yunchuan Zhang. Sonocatalytic activity of LuFeO3 crystallites synthesized via a hydrothermal route[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1987-1994.
doi:
10.1016/S1872-2067(15)60941-X
-
LuFeO3 crystallites of different sizes and morphologies were synthesized via a hydrothermal route. The sonocatalytic properties of the as-synthesized samples were investigated by degrading various organic dyes, including acid orange 7 (AO7), rhodamine B (RhB), methyl orange (MO), and methylene blue (MB), under ultrasonic irradiation, revealing that they exhibit excellent sonocatalytic activity toward the degradation of these dyes. Particularly, the synthesized bar-like particles with lengths of ~3 μm and widths of ~1 μm have the highest sonocatalytic activity, and the degradation percentage of AO7 reaches 89% after 30 min of sonocatalysis. The effects of inorganic anions such as Cl-, NO3-, SO42-, PO43-, and HCO3- on the sonocatalysis efficiency were investigated. Hydroxyl radicals (·OH) detected by fluorimetry using terephthalic acid as a probe molecule were found to be produced over the ultrasonic-irradiated LuFeO3 particles. The addition of ethanol, which acts as a ·OH scavenger, leads to quenching of ·OH radicals and a simultaneous decrease in the dye degradation. This suggests that ·OH is the dominant active species responsible for the dye degradation.
-
-
-
[1]
[1] Leong T, Ashokkumar M, Kentish S. Acoust Aust, 2011, 39(2): 54
-
[2]
[2] Xu H X, Eddingsaas N C, Suslick K S. J Am Chem Soc, 2009, 131: 6060
-
[3]
[3] Juretic H, Montalbo-Lomboy M, Van Leeuwen J, Cooper W J, Grewell D. Ultrason Sonochem, 2015, 22: 600
-
[4]
[4] Antonopoulou M, Evgenidou E, Lambropoulou D, Konstantinou I. Water Res, 2014, 53: 215
-
[5]
[5] Chave T, Navarro N M, Pochon P, Perkas N, Gedanken A, Nikitenko S I. Catal Today, 2015, 241: 55
-
[6]
[6] Zhu L, Jo S B, Ye S, Ullah K, Oh W C. Chin J Catal (催化学报), 2014, 35: 1825
-
[7]
[7] Khataee A, Soltani R D C, Karimi A, Joo S W. Ultrason Sonochem, 2015, 23: 219
-
[8]
[8] Zhang S N, Tian H F, Zhang S J, Wu X Q, Song L M, Ye J Y, Wei Q W. J Am Ceram Soc, 2013, 96: 3536
-
[9]
[9] He P Z, Song L M, Wu X Q, Tian H F, Wei Q W, Ye J Y, Zhang L G, Cui Y Y, Wang Y B. Ultrason Sonochem, 2014, 21: 136
-
[10]
[10] Wu Y, Song L M, Zhang S J, Wu X Q, Zhang S N, Tian H F, Ye J Y. Catal Commun, 2013, 37: 14
-
[11]
[11] Zhao H, Zhang G M, Zhang Q L. Ultrason Sonochem, 2014, 21: 991
-
[12]
[12] Song L M, Li Y M, He P Z, Zhang S J, Wu X Q, Fang S, Shan J J, Sun D L. Ultrason Sonochem, 2014, 21: 1318
-
[13]
[13] Zhang K, Oh W C. Bull Korean Chem Soc, 2010, 31: 1589
-
[14]
[14] Wang J, Guo B D, Zhang X D, Zhang Z H, Han J T, Wu J. Ultrason Sonochem, 2005, 12: 331
-
[15]
[15] White R L. J Appl Phys, 1969, 40: 1061
-
[16]
[16] Zhu W K, Pi L, Tan S, Zhang Y H. Appl Phys Lett, 2012, 100: 052407
-
[17]
[17] Zhang L, Chen X M. Solid State Commun, 2009, 149: 1317
-
[18]
[18] Wang W B, Zhao J, Wang W B, Gai Z, Balke N, Chi M F, Lee H N, Tian W, Zhu L Y, Cheng X M, Keavney D J, Yi J Y, Ward T Z, Snijders P C, Christen H M, Wu W D, Shen J, Xu X S. Phys Rev Lett, 2013, 110: 237601
-
[19]
[19] Chowdhury U, Goswami S, Bhattacharya D, Ghosh J, Basu S, Neogi S. Appl Phys Lett, 2014, 105: 052911
-
[20]
[20] Adams D J, Amadon B. Phys Rev B, 2009, 79: 115114
-
[21]
[21] Zhou M, Yang H, Xian T, Ma J Y, Zhang H M, Feng W J, Wei Z Q, Jiang J L. J Alloys Compd, 2014, 617: 855
-
[22]
[22] Zhou M, Yang H, Xian T, Li R S, Zhang H M, Wang X X. J Hazard Mater, 2015, 289: 149
-
[23]
[23] Ishibashi K I, Fujishima A, Watanabe T, Hashimoto K. J Photochem Photobiol A, 2000, 134: 139
-
[24]
[24] Wang S F, Yang H, Xian T, Liu X Q. Catal Commun, 2011, 12: 625
-
[25]
[25] Wang K, Zhang J Y, Lou L P, Yang S Y, Chen Y X. J Photochem Photobiol A, 2004, 165: 201
-
[26]
[26] Burns R A, Crittenden J C, Hand D W, Selzer V H, Sutter L L, Salman S R. J Environ Eng, 1999, 125: 77
-
[27]
[27] Xian T, Yang H, Di L J, Chen X F, Dai J F. J Sol-Gel Sci Technol, 2013, 66: 324
-
[28]
[28] Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes. New York: Plenum Press, 1980. 72
-
[29]
[29] Andersen T, Haugen H K, Hotop H. J Phys Chem Ref Data, 1999, 28: 1511
-
[30]
[30] Davis V T, Thompson J S. J Phys B, 2001, 34: L433
-
[31]
[31] Tachikawa T, Fujitsuka M, Majima T. J Phys Chem C, 2007, 111: 5259
-
[32]
[32] Jiang H Y, Cheng K, Lin J. Phys Chem Chem Phys, 2012, 14: 12114
-
[1]
-
-
-
[1]
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
-
[2]
Yuan GAO , Yiming LIU , Chunhui WANG , Zhe HAN , Chaoyue FAN , Jie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271
-
[3]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[4]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[5]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[6]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[7]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[8]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[9]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[10]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[11]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[12]
Yuan Zheng , Quan Lan , Zhenggen Zha , Lingling Li , Jun Jiang , Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065
-
[13]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[14]
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
-
[15]
Juan CHEN , Guoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341
-
[16]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[17]
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
-
[18]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[19]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[20]
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(289)
- HTML views(4)