Citation: Siping Jian, Yingwei Li. Ni@Pd core-shell nanoparticles supported on a metal-organic framework as highly efficient catalysts for nitroarenes reduction[J]. Chinese Journal of Catalysis, ;2016, 37(1): 91-97. doi: 10.1016/S1872-2067(15)60940-8 shu

Ni@Pd core-shell nanoparticles supported on a metal-organic framework as highly efficient catalysts for nitroarenes reduction

  • Corresponding author: Yingwei Li, 
  • Received Date: 7 June 2015
    Available Online: 19 June 2015

    Fund Project: 国家自然科学基金(21322606, 21436005) (21322606, 21436005) 高等学校博士学科点专项科研基金(20120172110012) (20120172110012) 广东省自然科学基金(S2011020002397, 2013B090500027). (S2011020002397, 2013B090500027)

  • Ni@Pd core-shell nanoparticles with a mean particle size of 8-9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine. Subsequently, the first-ever deposition of Ni@Pd core-shell nanoparticles having different compositions on a metal-organic framework (MIL-101) was accomplished by wet impregnation in n-hexane. The Ni@Pd/MIL-101 materials were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy and also investigated as catalysts for the hydrogenation of nitrobenzene under mild reaction conditions. At 30 ℃ and 0.1 MPa of H2 pressure, the Ni@Pd/MIL-101 gives a TOF as high as 375 h-1 for the hydrogenation of nitrobenzene and is applicable to a wide range of substituted nitroarenes. The exceptional performance of this catalyst is believed to result from the significant Ni-Pd interaction in the core-shell structure, together with promotion of the conversions of aromatics by uncoordinated Lewis acidic Cr sites on the MIL-101 support.
  • 加载中
    1. [1]

      [1] J. L. Pinilla, A. B. García, K. Philippot, P. Lara, E. J. García-Suárez, M. Millan, Fuel, 2014, 116, 729.

    2. [2]

      [2] G. Z. Chen, S. J. Wu, H. L. Liu, H. F. Jiang, Y. W. Li, Green Chem., 2013, 15, 230.

    3. [3]

      [3] B. Z. Yuan, Y. Y. Pan, Y. W. Li, B. L. Yin, H. F. Jiang, Angew. Chem. Int. Ed., 2010, 49, 4054.

    4. [4]

      [4] F. R. Wang, S. S. Tang, Y. H. Yu, L. F. Wang, B. L .Yin, X H. Li, Chin. J. Catal., 2014, 35, 1921.

    5. [5]

      [5] M. R. Nabid, Y. Bide, N. Ghalavand, M. Niknezhad, Appl. Organomet. Chem., 2014, 28, 389.

    6. [6]

      [6] R. Ghosh Chaudhuri, S. Paria, Chem. Rev., 2012, 112, 2373.

    7. [7]

      [7] Y. Z. Chen, Q. Xu, S. H. Yu, H. L. Jiang, Small, 2015, 11, 71.

    8. [8]

      [8] P. P. Zhang, Y. B. Hu, B. H. Li, Q. J. Zhang, C. Zhou, H. B. Yu, X. J. Zhang, L. Chen, B. Eichhorn, S. H. Zhou, ACS Catal., 2015, 5, 1335.

    9. [9]

      [9] Q. Sun, X. Q. Zhang, Y. Wang, A. H. Lu, Chin. J. Catal., 2015, 36, 683.

    10. [10]

      [10] J. Hermannsdörfer, M. Friedrich, N. Miyajima, R. Q. Albuquerque, S. Kümmel, R. Kempe, Angew. Chem. Int. Ed., 2012, 51, 11473.

    11. [11]

      [11] S. U. Son, Y. Jang, J. Park, H. B. Na, H. M. Park, H. J. Yun, J. Lee, T. Hyeon, J. Am. Chem. Soc., 2004, 126, 5026.

    12. [12]

      [12] R. Massard, D. Uzio, C. Thomazeau, C. Pichon, J. L. Rousset, J. C.. Bertolini, J. Catal., 2007, 245, 133.

    13. [13]

      [13] M. M. Zhang, Z. X. Yan, Q. Sun, J. M. Xie, J. J. Jing, New J. Chem., 2012, 36, 2533.

    14. [14]

      [14] O. Metin, S. F. Ho, C. Alp, H. Can, M. N. Mankin, M. S. Gültekin, M. F. Chi, S. H. Sun, Nano Res., 2013, 6, 10.

    15. [15]

      [15] H. S. Wei, X. Y. Liu, A. Q. Wang, L. L. Zhang, B. T. Qiao, X. F. Yang, Y. Q. Huang, S. Miao, J. Y. Liu, T. Zhang, Nat. Commun., 2014, 5, 5634.

    16. [16]

      [16] K. I. Shimizu, Y. Miyamoto, T. Kawasaki, T. Tanji, Y. Tai, A. Satsuma, J. Phys. Chem. C, 2009, 113, 17803.

    17. [17]

      [17] W. W. Lin, H. Y. Cheng, J. Ming, Y. C. Yu, F. Y. Zhao, J. Catal., 2012, 291, 149.

    18. [18]

      [18] W. C. Du, G. Z. Chen, R. F. Nie, Y. W. Li, Z. Y. Hou, Catal. Commun., 2013, 41, 56.

    19. [19]

      [19] K. Fuku, T. Sakano, T. Kamegawa, K. Mori, H. Yamashita, J. Mater. Chem., 2012, 22, 16243.

    20. [20]

      [20] E. Kim, H. S. Jeong, B. M. Kim, Catal. Commun., 2014, 45, 25.

    21. [21]

      [21] J. R. Niu, X. Huo, F. W. Zhang, H. B. Wang, P. Zhao, W. Q. Hu, J. T. Ma, R. Li, ChemCatChem, 2013, 5, 349.

    22. [22]

      [22] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science, 2005, 309, 2040.

    23. [23]

      [23] H. L. Liu, Y. W. Li, H. F. Jiang, C. Vargas, R. Luque, Chem. Commun., 2012, 48, 8431.

    24. [24]

      [24] Y. Y. Pan, B. Z. Yuan, Y. W. Li, D. H. He, Chem. Commun., 2010, 46, 2280.

    25. [25]

      [25] Y. K. Hwang, D. Y. Hong, J. S. Chang, S. H. Jhung, Y. K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Angew. Chem. Int. Ed., 2008, 47, 4144.

    26. [26]

      [26] M. M. Zhang, Z. X. Yan, J. M. Xie, Electrochim. Acta, 2012, 77, 237.

    27. [27]

      [27] Y. Pan, H. Y. Bai, L. Pan, Y. D. Li, M. C. Tamargo, M. Sohel, J. R.. Lombardi, J. Mater. Chem., 2012, 22, 23593.

    28. [28]

      [28] Y. Wu, D. S. Wang, Z. Q. Niu, P. C. Chen, G. Zhou, Y. D. Li, Angew. Chem. Int. Ed., 2012, 51, 12524.

    29. [29]

      [29] P. Wang, F. W. Zhang, Y. Long, M. Xie, R. Li, J. T. Ma, Catal. Sci. Technol., 2013, 3, 1618.

    30. [30]

      [30] Z. K. Zhao, H. L. Yang, Y. Li, RSC Adv., 2014, 4, 22669.

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    10. [10]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(1)
  • Abstract views(586)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return