Citation:
Siping Jian, Yingwei Li. Ni@Pd core-shell nanoparticles supported on a metal-organic framework as highly efficient catalysts for nitroarenes reduction[J]. Chinese Journal of Catalysis,
;2016, 37(1): 91-97.
doi:
10.1016/S1872-2067(15)60940-8
-
Ni@Pd core-shell nanoparticles with a mean particle size of 8-9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine. Subsequently, the first-ever deposition of Ni@Pd core-shell nanoparticles having different compositions on a metal-organic framework (MIL-101) was accomplished by wet impregnation in n-hexane. The Ni@Pd/MIL-101 materials were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy and also investigated as catalysts for the hydrogenation of nitrobenzene under mild reaction conditions. At 30 ℃ and 0.1 MPa of H2 pressure, the Ni@Pd/MIL-101 gives a TOF as high as 375 h-1 for the hydrogenation of nitrobenzene and is applicable to a wide range of substituted nitroarenes. The exceptional performance of this catalyst is believed to result from the significant Ni-Pd interaction in the core-shell structure, together with promotion of the conversions of aromatics by uncoordinated Lewis acidic Cr sites on the MIL-101 support.
-
-
-
[1]
[1] J. L. Pinilla, A. B. García, K. Philippot, P. Lara, E. J. García-Suárez, M. Millan, Fuel, 2014, 116, 729.
-
[2]
[2] G. Z. Chen, S. J. Wu, H. L. Liu, H. F. Jiang, Y. W. Li, Green Chem., 2013, 15, 230.
-
[3]
[3] B. Z. Yuan, Y. Y. Pan, Y. W. Li, B. L. Yin, H. F. Jiang, Angew. Chem. Int. Ed., 2010, 49, 4054.
-
[4]
[4] F. R. Wang, S. S. Tang, Y. H. Yu, L. F. Wang, B. L .Yin, X H. Li, Chin. J. Catal., 2014, 35, 1921.
-
[5]
[5] M. R. Nabid, Y. Bide, N. Ghalavand, M. Niknezhad, Appl. Organomet. Chem., 2014, 28, 389.
-
[6]
[6] R. Ghosh Chaudhuri, S. Paria, Chem. Rev., 2012, 112, 2373.
-
[7]
[7] Y. Z. Chen, Q. Xu, S. H. Yu, H. L. Jiang, Small, 2015, 11, 71.
-
[8]
[8] P. P. Zhang, Y. B. Hu, B. H. Li, Q. J. Zhang, C. Zhou, H. B. Yu, X. J. Zhang, L. Chen, B. Eichhorn, S. H. Zhou, ACS Catal., 2015, 5, 1335.
-
[9]
[9] Q. Sun, X. Q. Zhang, Y. Wang, A. H. Lu, Chin. J. Catal., 2015, 36, 683.
-
[10]
[10] J. Hermannsdörfer, M. Friedrich, N. Miyajima, R. Q. Albuquerque, S. Kümmel, R. Kempe, Angew. Chem. Int. Ed., 2012, 51, 11473.
-
[11]
[11] S. U. Son, Y. Jang, J. Park, H. B. Na, H. M. Park, H. J. Yun, J. Lee, T. Hyeon, J. Am. Chem. Soc., 2004, 126, 5026.
-
[12]
[12] R. Massard, D. Uzio, C. Thomazeau, C. Pichon, J. L. Rousset, J. C.. Bertolini, J. Catal., 2007, 245, 133.
-
[13]
[13] M. M. Zhang, Z. X. Yan, Q. Sun, J. M. Xie, J. J. Jing, New J. Chem., 2012, 36, 2533.
-
[14]
[14] O. Metin, S. F. Ho, C. Alp, H. Can, M. N. Mankin, M. S. Gültekin, M. F. Chi, S. H. Sun, Nano Res., 2013, 6, 10.
-
[15]
[15] H. S. Wei, X. Y. Liu, A. Q. Wang, L. L. Zhang, B. T. Qiao, X. F. Yang, Y. Q. Huang, S. Miao, J. Y. Liu, T. Zhang, Nat. Commun., 2014, 5, 5634.
-
[16]
[16] K. I. Shimizu, Y. Miyamoto, T. Kawasaki, T. Tanji, Y. Tai, A. Satsuma, J. Phys. Chem. C, 2009, 113, 17803.
-
[17]
[17] W. W. Lin, H. Y. Cheng, J. Ming, Y. C. Yu, F. Y. Zhao, J. Catal., 2012, 291, 149.
-
[18]
[18] W. C. Du, G. Z. Chen, R. F. Nie, Y. W. Li, Z. Y. Hou, Catal. Commun., 2013, 41, 56.
-
[19]
[19] K. Fuku, T. Sakano, T. Kamegawa, K. Mori, H. Yamashita, J. Mater. Chem., 2012, 22, 16243.
-
[20]
[20] E. Kim, H. S. Jeong, B. M. Kim, Catal. Commun., 2014, 45, 25.
-
[21]
[21] J. R. Niu, X. Huo, F. W. Zhang, H. B. Wang, P. Zhao, W. Q. Hu, J. T. Ma, R. Li, ChemCatChem, 2013, 5, 349.
-
[22]
[22] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science, 2005, 309, 2040.
-
[23]
[23] H. L. Liu, Y. W. Li, H. F. Jiang, C. Vargas, R. Luque, Chem. Commun., 2012, 48, 8431.
-
[24]
[24] Y. Y. Pan, B. Z. Yuan, Y. W. Li, D. H. He, Chem. Commun., 2010, 46, 2280.
-
[25]
[25] Y. K. Hwang, D. Y. Hong, J. S. Chang, S. H. Jhung, Y. K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Angew. Chem. Int. Ed., 2008, 47, 4144.
-
[26]
[26] M. M. Zhang, Z. X. Yan, J. M. Xie, Electrochim. Acta, 2012, 77, 237.
-
[27]
[27] Y. Pan, H. Y. Bai, L. Pan, Y. D. Li, M. C. Tamargo, M. Sohel, J. R.. Lombardi, J. Mater. Chem., 2012, 22, 23593.
-
[28]
[28] Y. Wu, D. S. Wang, Z. Q. Niu, P. C. Chen, G. Zhou, Y. D. Li, Angew. Chem. Int. Ed., 2012, 51, 12524.
-
[29]
[29] P. Wang, F. W. Zhang, Y. Long, M. Xie, R. Li, J. T. Ma, Catal. Sci. Technol., 2013, 3, 1618.
-
[30]
[30] Z. K. Zhao, H. L. Yang, Y. Li, RSC Adv., 2014, 4, 22669.
-
[1]
-
-
-
[1]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[2]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[3]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[4]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[5]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[6]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[7]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[8]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[9]
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
-
[10]
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
-
[11]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[12]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[13]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[14]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[15]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[16]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[17]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[18]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[19]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[20]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(586)
- HTML views(86)