Citation:
Shuai Wang, Jie Wang, Xiaojuan Zhu, Jianqiang Wang, Osamu Terasaki, Ying Wan. Size-control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework[J]. Chinese Journal of Catalysis,
;2016, 37(1): 61-72.
doi:
10.1016/S1872-2067(15)60917-2
-
Simultaneously controlling the size of Au nanoparticles and immobilizing their location to specific active sites while hindering migration and sintering at elevated temperatures is a current challenge within materials chemistry. Typical methods require the use of protecting agents to control the properties of Au nanoparticles and therefore it is difficult to decouple the influence of the protecting agent and the support material. By functionalizing the internal surface area of mesoporous carbon supports with thiol groups and implementing a simple acid extraction step, we are able to design the resulting materials with precise control over the Au nanoparticle size without the need for the presence of any protecting group, whilst simultaneously confining the nanoparticles to within the internal porous network. Monodispersed Au nanoparticles in the absence of protecting agents were encapsulated into ordered mesoporous carbon at various loading levels via a coordination-assisted self-assembly approach. The X-ray diffractograms and transmission electron microscopy micrographs show that the particles have controlled and well-defined diameters between 3 and 18 nm at concentrations between 1.1 and 9.0 wt%. The Au nanoparticles are intercalated into the pore matrix to different degrees depending on the synthesis conditions and are stable after high temperature treatment at 600 ℃. N2 adsorption- desorption isotherms show that the Au functionalized mesoporous carbon catalysts possess high surface areas (1269-1743 m2/g), large pore volumes (0.78-1.38 cm3/g) and interpenetrated, uniform bimodal mesopores with the primary larger mesopore lying in the range of 3.4-5.7 nm and the smaller secondary mesopore having a diameter close to 2 nm. X-ray absorption near extended spectroscopy analysis reveals changes to the electronic properties of the Au nanoparticles as a function of reduced particle size. The predominant factors that significantly determine the end Au nanoparticle size is both the thiol group concentration and subjecting the as-made materials to an additional concentrated sulfuric acid extraction step.
-
Keywords:
- Gold nanoparticles,
- Size,
- Carbon,
- Mesoporous
-
-
-
[1]
[1] G. J. Hutchings, J. Catal., 1985, 96, 292.
-
[2]
[2] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett., 1987, 405.
-
[3]
[3] M. Haruta, Nature, 2005, 437, 1098.
-
[4]
[4] M. McEntee, W. Tang, M. Neurock, J. T. Yates Jr, J. Am. Chem. Soc., 2014, 136, 5116.
-
[5]
[5] W. Zhu, Y. J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson, S. Sun, J. Am. Chem. Soc., 2014, 136, 16132.
-
[6]
[6] Z. Y. Zhang, Y. Wang, X. Li, W. L. Da, Chin. J. Catal., 2014, 35, 1846.
-
[7]
[7] S. Fountoulaki, V. Daikopoulou, P. L. Gkizis, I. Tamiolakis, G. S. Armatas, I. N. Lykakis, ACS Catal., 2014, 4, 3504.
-
[8]
[8] G. Li, D. E. Jiang, S. Kumar, Y. X. Chen, R. C. Jin, ACS Catal., 2014, 4, 2463.
-
[9]
[9] G. Li, R. C. Jin, J. Am. Chem. Soc., 2014, 136, 11347.
-
[10]
[10] H. Wei, X. Wei, X. Yang, G. Yin, A. Wang, X. Liu, Y. Huang, T. Zhang, Chin. J. Catal., 2015, 36, 160.
-
[11]
[11] V. I. Sobolev, K. Y. Koltunov, Appl. Catal. A, 2014, 476, 197.
-
[12]
[12] W. S. Lee, M. C. Akatay, E. A. Stach, F. H. Ribeiro, W. N. Delgass, J. Catal., 2014, 313, 104.
-
[13]
[13] G. Li, D. E. Jiang, C. Liu, C. Yu, R. Jin, J. Catal., 2013, 306, 177.
-
[14]
[14] S. Shabbir, Y. Lee, H. Rhee, J. Catal., 2015, 322, 104.
-
[15]
[15] X. Feng, X. Duan, G. Qian, X. Zhou, D. Chen, W. Yuan, J. Catal., 2014, 317, 99.
-
[16]
[16] S. Gil, N. Cuenca, A. Romero, J. L. Valverde, L. Sánchez-Silva, Appl. Catal. A, 2014, 472, 11.
-
[17]
[17] N. T. Khoa, S. W. Kim, D. H. Yoo, E. J. Kim, S. H. Hahn, Appl. Catal. A, 2014, 469, 159.
-
[18]
[18] G. R. Zhang, B. Q. Xu, Chin. J. Catal., 2013, 34, 942.
-
[19]
[19] A. Goguet, C. Hardacre, I. Harvey, K. Narasimharao, Y. Saih, J. Sa, J. Am. Chem. Soc., 2009, 131, 6973.
-
[20]
[20] H. Zhang, B. Dai, W. Li, X. Wang, J. Zhang, M. Zhu, J. Gu, J. Catal., 2014, 316, 141.
-
[21]
[21] L Prati, A Villa, A R Lupini, G M. Veith, Phys. Chem. Chem. Phys., 2012, 14, 2969.
-
[22]
[22] L. Prati, M. Rossi, J. Catal., 1998, 176, 552.
-
[23]
[23] T. Yoskamtorn, S. Yamazoe, R. Takahata, J. Nishigaki, A. Thivasasith, J. Limtrakul, T. Tsukuda, ACS Catal., 2014, 4, 3696.
-
[24]
[24] C. Fernandes, C. Pereira, A. Guedes, S. L. H. Rebelo, C. Freire, Appl. Catal. A, 2014, 486, 150.
-
[25]
[25] F. Porta, L. Prati, M Rossi, S Coluccia, G. Martra, Catal. Today, 2000, 61, 165.
-
[26]
[26] C. L. Bianchi, S. Biella, A. Gervasini, L. Prati, M. Rossi, Catal. Lett., 2003, 85, 91.
-
[27]
[27] M. L. Toebes, Y. H. Zhang, J. Hajek, T. A. Nijhuis, J. H. Bitter, A. J. van Dillen, D. Y. Murzin, D. C. Koningsberger, K. P. de Jong, J. Catal., 2004, 226, 215.
-
[28]
[28] R. Y. Zhong, K. Q. Sun, Y. C. Hong, B. Q. Xu, ACS Catal., 2014, 4, 3982.
-
[29]
[29] R. Y. Zhong, X. H. Yan, Z. K. Gao, R. J. Zhang, B. Q. Xu, Catal. Sci. Technol., 2013, 3, 3013.
-
[30]
[30] M. T. Bore, H. N. Pham, E. E. Switzer, T. L. Ward, A. Fukuoka, A. K. Datye, J. Phys. Chem. B, 2005, 109, 2873.
-
[31]
[31] K. K. R. Datta, B. V. S. Reddy, K. Ariga, A. Vinu, Angew. Chem. Int. Ed., 2010, 49, 5961.
-
[32]
[32] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc., 2000, 122: 10712.
-
[33]
[33] F. Kerdi, V. Caps, A. Tuel, Microporous Mesoporous Mater., 2011, 140: 89.
-
[34]
[34] Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed., 2005, 44, 7053.
-
[35]
[35] S. Wang, Q. Zhao, H. Wei, J. Q. Wang, M. Cho, H. S. Cho, O. Terasaki, Y. Wan, J. Am. Chem. Soc., 2013, 135, 11849.
-
[36]
[36] E. Besson, A. Mehdi, C. Reye, R. J. P. Corriu, J. Mater. Chem., 2009, 19, 4746.
-
[37]
[37] L. Chen, J. Hu, R. Richards, J. Am. Chem. Soc., 2009, 131, 914.
-
[38]
[38] B. Lee, H. Zhu, Z. Zhang, S. H. Overbury, S. Dai, Microporous Mesoporous Mater., 2004, 70, 71.
-
[39]
[39] P. Wu, P. Bai, Z. Lei, K. P. Loh, X. S. Zhao, Microporous Mesoporous Mater., 2011, 141, 222.
-
[40]
[40] H. Zhu, B. Lee, S. Dai, S. H. Overbury, Langmuir, 2003, 19, 3974.
-
[41]
[41] S. Wang, J. Wang, Q. Zhao, D. Li, J. Q. Wang, M. Cho, H. Cho, O. Terasaki, S. Chen, Y. Wan, ACS Catal., 2014, 4, 797.
-
[42]
[42] X. Zhuang, Q. Zhao, Y. Wan, J. Mater. Chem., 2010, 20, 4715.
-
[43]
[43] A. Balerna, S. Mobilio, Phys. Rev. B, 1986, 34, 2293.
-
[44]
[44] I. Coulthard, S. Degen, Y. J. Zhu, T. K. Sham, Can. J. Chem., 1998, 76, 1707.
-
[45]
[45] L. F. Mattheiss, R. E. Dietz, Phys. Rev. B, 1980, 22, 1663.
-
[46]
[46] J. T. Miller, A. J. Kropf, Y. Zha, J. R. Regalbuto, L. Delannoy, C. Louis, E. Bus, J. A. van Bokhoven, J. Catal., 2006, 240, 222.
-
[47]
[47] X. Zhuang, Y. Wan, C. Feng, Y. Shen, D. Zhao, Chem. Mater., 2009, 21, 706.
-
[48]
[48] Y. Wan, H. Wang, Q. Zhao, M. Klingstedt, O. Terasaki, D. Zhao, J. Am. Chem. Soc., 2009, 131, 4541
-
[49]
[49] R. Liu, Y. Shi, Y. Wan, Y. Meng, F. Zhang, D. Gu, Z. Chen, B. Tu, D. Zhao, J. Am. Chem. Soc., 2006, 128, 11652.
-
[50]
[50] S. Suzer, Appl. Spectrosc., 2000, 54, 1716.
-
[51]
[51] A. H. Lu, J. J. Nitz, M. Comotti, C. Weidenthaler, K. Schlichte, C. W. Lehmann, O. Terasaki, F. Schüth, J. Am. Chem. Soc., 2010, 132, 14152.
-
[52]
[52] W. Wang, H. Y. Wang, W. Wei, Z. G. Xiao, Y. Wan, Chem. Eur. J., 2011, 17, 13461.
-
[53]
[53] A. B. Laursen, K. T. Hojholt, L. F. Lundegaard, S. B. Simonsen, S. Helveg, F. Schueth, M. Paul, J. D. Grunwaldt, S. Kegnoes, C. H. Christensen, K. Egeblad, Angew. Chem. Int. Ed., 2010, 49, 3504.
-
[54]
[54] P. M. Arnal, M. Comotti, F. Schueth, Angew. Chem. Int. Ed., 2006, 45, 8224.
-
[55]
[55] S. Ungureanu, M. Birot, G. Laurent, H. Deleuze, O. Babot, B. Julián-López, M. F. Achard, M. I. Popa, C. Sanchez, R. Backov, Chem. Mater., 2007, 19, 5786.
-
[56]
[56] K. Wilson, A. F. Lee, D. J. Macquarrie, J .H. Clark, Appl. Catal. A, 2002, 228, 127.
-
[57]
[57] M. Choi, R. Ryoo, Nat. Mater., 2003, 2, 473.
-
[58]
[58] R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B, 1999, 103, 7743.
-
[1]
-
-
-
[1]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[2]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[3]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[4]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[5]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[6]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[7]
Lei Shu , Zimin Duan , Yushen Kang , Zijian Zhao , Hong Wang , Lihua Zhu , Hui Xiong , Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084
-
[8]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[9]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[10]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[11]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[12]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[13]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[14]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[15]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[16]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[17]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[18]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[19]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[20]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1007)
- HTML views(161)