Citation: Shuai Wang, Jie Wang, Xiaojuan Zhu, Jianqiang Wang, Osamu Terasaki, Ying Wan. Size-control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework[J]. Chinese Journal of Catalysis, ;2016, 37(1): 61-72. doi: 10.1016/S1872-2067(15)60917-2 shu

Size-control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework

  • Corresponding author: Ying Wan, 
  • Received Date: 3 March 2015
    Available Online: 8 May 2015

    Fund Project: 国家重点基础研究发展计划(973计划, 2013CB934102) (973计划, 2013CB934102) 国家自然科学基金(21322308, 21173149) (21322308, 21173149) 教育部创新团队发展计划(PCSIRT-IRT1269) (PCSIRT-IRT1269) 教育部高等学校博士学科点基金(20123127110004) (20123127110004) 上海市科委和教委基金(11JC1409200, DZL123, S30406). (11JC1409200, DZL123, S30406)

  • Simultaneously controlling the size of Au nanoparticles and immobilizing their location to specific active sites while hindering migration and sintering at elevated temperatures is a current challenge within materials chemistry. Typical methods require the use of protecting agents to control the properties of Au nanoparticles and therefore it is difficult to decouple the influence of the protecting agent and the support material. By functionalizing the internal surface area of mesoporous carbon supports with thiol groups and implementing a simple acid extraction step, we are able to design the resulting materials with precise control over the Au nanoparticle size without the need for the presence of any protecting group, whilst simultaneously confining the nanoparticles to within the internal porous network. Monodispersed Au nanoparticles in the absence of protecting agents were encapsulated into ordered mesoporous carbon at various loading levels via a coordination-assisted self-assembly approach. The X-ray diffractograms and transmission electron microscopy micrographs show that the particles have controlled and well-defined diameters between 3 and 18 nm at concentrations between 1.1 and 9.0 wt%. The Au nanoparticles are intercalated into the pore matrix to different degrees depending on the synthesis conditions and are stable after high temperature treatment at 600 ℃. N2 adsorption- desorption isotherms show that the Au functionalized mesoporous carbon catalysts possess high surface areas (1269-1743 m2/g), large pore volumes (0.78-1.38 cm3/g) and interpenetrated, uniform bimodal mesopores with the primary larger mesopore lying in the range of 3.4-5.7 nm and the smaller secondary mesopore having a diameter close to 2 nm. X-ray absorption near extended spectroscopy analysis reveals changes to the electronic properties of the Au nanoparticles as a function of reduced particle size. The predominant factors that significantly determine the end Au nanoparticle size is both the thiol group concentration and subjecting the as-made materials to an additional concentrated sulfuric acid extraction step.
  • 加载中
    1. [1]

      [1] G. J. Hutchings, J. Catal., 1985, 96, 292.

    2. [2]

      [2] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett., 1987, 405.

    3. [3]

      [3] M. Haruta, Nature, 2005, 437, 1098.

    4. [4]

      [4] M. McEntee, W. Tang, M. Neurock, J. T. Yates Jr, J. Am. Chem. Soc., 2014, 136, 5116.

    5. [5]

      [5] W. Zhu, Y. J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson, S. Sun, J. Am. Chem. Soc., 2014, 136, 16132.

    6. [6]

      [6] Z. Y. Zhang, Y. Wang, X. Li, W. L. Da, Chin. J. Catal., 2014, 35, 1846.

    7. [7]

      [7] S. Fountoulaki, V. Daikopoulou, P. L. Gkizis, I. Tamiolakis, G. S. Armatas, I. N. Lykakis, ACS Catal., 2014, 4, 3504.

    8. [8]

      [8] G. Li, D. E. Jiang, S. Kumar, Y. X. Chen, R. C. Jin, ACS Catal., 2014, 4, 2463.

    9. [9]

      [9] G. Li, R. C. Jin, J. Am. Chem. Soc., 2014, 136, 11347.

    10. [10]

      [10] H. Wei, X. Wei, X. Yang, G. Yin, A. Wang, X. Liu, Y. Huang, T. Zhang, Chin. J. Catal., 2015, 36, 160.

    11. [11]

      [11] V. I. Sobolev, K. Y. Koltunov, Appl. Catal. A, 2014, 476, 197.

    12. [12]

      [12] W. S. Lee, M. C. Akatay, E. A. Stach, F. H. Ribeiro, W. N. Delgass, J. Catal., 2014, 313, 104.

    13. [13]

      [13] G. Li, D. E. Jiang, C. Liu, C. Yu, R. Jin, J. Catal., 2013, 306, 177.

    14. [14]

      [14] S. Shabbir, Y. Lee, H. Rhee, J. Catal., 2015, 322, 104.

    15. [15]

      [15] X. Feng, X. Duan, G. Qian, X. Zhou, D. Chen, W. Yuan, J. Catal., 2014, 317, 99.

    16. [16]

      [16] S. Gil, N. Cuenca, A. Romero, J. L. Valverde, L. Sánchez-Silva, Appl. Catal. A, 2014, 472, 11.

    17. [17]

      [17] N. T. Khoa, S. W. Kim, D. H. Yoo, E. J. Kim, S. H. Hahn, Appl. Catal. A, 2014, 469, 159.

    18. [18]

      [18] G. R. Zhang, B. Q. Xu, Chin. J. Catal., 2013, 34, 942.

    19. [19]

      [19] A. Goguet, C. Hardacre, I. Harvey, K. Narasimharao, Y. Saih, J. Sa, J. Am. Chem. Soc., 2009, 131, 6973.

    20. [20]

      [20] H. Zhang, B. Dai, W. Li, X. Wang, J. Zhang, M. Zhu, J. Gu, J. Catal., 2014, 316, 141.

    21. [21]

      [21] L Prati, A Villa, A R Lupini, G M. Veith, Phys. Chem. Chem. Phys., 2012, 14, 2969.

    22. [22]

      [22] L. Prati, M. Rossi, J. Catal., 1998, 176, 552.

    23. [23]

      [23] T. Yoskamtorn, S. Yamazoe, R. Takahata, J. Nishigaki, A. Thivasasith, J. Limtrakul, T. Tsukuda, ACS Catal., 2014, 4, 3696.

    24. [24]

      [24] C. Fernandes, C. Pereira, A. Guedes, S. L. H. Rebelo, C. Freire, Appl. Catal. A, 2014, 486, 150.

    25. [25]

      [25] F. Porta, L. Prati, M Rossi, S Coluccia, G. Martra, Catal. Today, 2000, 61, 165.

    26. [26]

      [26] C. L. Bianchi, S. Biella, A. Gervasini, L. Prati, M. Rossi, Catal. Lett., 2003, 85, 91.

    27. [27]

      [27] M. L. Toebes, Y. H. Zhang, J. Hajek, T. A. Nijhuis, J. H. Bitter, A. J. van Dillen, D. Y. Murzin, D. C. Koningsberger, K. P. de Jong, J. Catal., 2004, 226, 215.

    28. [28]

      [28] R. Y. Zhong, K. Q. Sun, Y. C. Hong, B. Q. Xu, ACS Catal., 2014, 4, 3982.

    29. [29]

      [29] R. Y. Zhong, X. H. Yan, Z. K. Gao, R. J. Zhang, B. Q. Xu, Catal. Sci. Technol., 2013, 3, 3013.

    30. [30]

      [30] M. T. Bore, H. N. Pham, E. E. Switzer, T. L. Ward, A. Fukuoka, A. K. Datye, J. Phys. Chem. B, 2005, 109, 2873.

    31. [31]

      [31] K. K. R. Datta, B. V. S. Reddy, K. Ariga, A. Vinu, Angew. Chem. Int. Ed., 2010, 49, 5961.

    32. [32]

      [32] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc., 2000, 122: 10712.

    33. [33]

      [33] F. Kerdi, V. Caps, A. Tuel, Microporous Mesoporous Mater., 2011, 140: 89.

    34. [34]

      [34] Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed., 2005, 44, 7053.

    35. [35]

      [35] S. Wang, Q. Zhao, H. Wei, J. Q. Wang, M. Cho, H. S. Cho, O. Terasaki, Y. Wan, J. Am. Chem. Soc., 2013, 135, 11849.

    36. [36]

      [36] E. Besson, A. Mehdi, C. Reye, R. J. P. Corriu, J. Mater. Chem., 2009, 19, 4746.

    37. [37]

      [37] L. Chen, J. Hu, R. Richards, J. Am. Chem. Soc., 2009, 131, 914.

    38. [38]

      [38] B. Lee, H. Zhu, Z. Zhang, S. H. Overbury, S. Dai, Microporous Mesoporous Mater., 2004, 70, 71.

    39. [39]

      [39] P. Wu, P. Bai, Z. Lei, K. P. Loh, X. S. Zhao, Microporous Mesoporous Mater., 2011, 141, 222.

    40. [40]

      [40] H. Zhu, B. Lee, S. Dai, S. H. Overbury, Langmuir, 2003, 19, 3974.

    41. [41]

      [41] S. Wang, J. Wang, Q. Zhao, D. Li, J. Q. Wang, M. Cho, H. Cho, O. Terasaki, S. Chen, Y. Wan, ACS Catal., 2014, 4, 797.

    42. [42]

      [42] X. Zhuang, Q. Zhao, Y. Wan, J. Mater. Chem., 2010, 20, 4715.

    43. [43]

      [43] A. Balerna, S. Mobilio, Phys. Rev. B, 1986, 34, 2293.

    44. [44]

      [44] I. Coulthard, S. Degen, Y. J. Zhu, T. K. Sham, Can. J. Chem., 1998, 76, 1707.

    45. [45]

      [45] L. F. Mattheiss, R. E. Dietz, Phys. Rev. B, 1980, 22, 1663.

    46. [46]

      [46] J. T. Miller, A. J. Kropf, Y. Zha, J. R. Regalbuto, L. Delannoy, C. Louis, E. Bus, J. A. van Bokhoven, J. Catal., 2006, 240, 222.

    47. [47]

      [47] X. Zhuang, Y. Wan, C. Feng, Y. Shen, D. Zhao, Chem. Mater., 2009, 21, 706.

    48. [48]

      [48] Y. Wan, H. Wang, Q. Zhao, M. Klingstedt, O. Terasaki, D. Zhao, J. Am. Chem. Soc., 2009, 131, 4541

    49. [49]

      [49] R. Liu, Y. Shi, Y. Wan, Y. Meng, F. Zhang, D. Gu, Z. Chen, B. Tu, D. Zhao, J. Am. Chem. Soc., 2006, 128, 11652.

    50. [50]

      [50] S. Suzer, Appl. Spectrosc., 2000, 54, 1716.

    51. [51]

      [51] A. H. Lu, J. J. Nitz, M. Comotti, C. Weidenthaler, K. Schlichte, C. W. Lehmann, O. Terasaki, F. Schüth, J. Am. Chem. Soc., 2010, 132, 14152.

    52. [52]

      [52] W. Wang, H. Y. Wang, W. Wei, Z. G. Xiao, Y. Wan, Chem. Eur. J., 2011, 17, 13461.

    53. [53]

      [53] A. B. Laursen, K. T. Hojholt, L. F. Lundegaard, S. B. Simonsen, S. Helveg, F. Schueth, M. Paul, J. D. Grunwaldt, S. Kegnoes, C. H. Christensen, K. Egeblad, Angew. Chem. Int. Ed., 2010, 49, 3504.

    54. [54]

      [54] P. M. Arnal, M. Comotti, F. Schueth, Angew. Chem. Int. Ed., 2006, 45, 8224.

    55. [55]

      [55] S. Ungureanu, M. Birot, G. Laurent, H. Deleuze, O. Babot, B. Julián-López, M. F. Achard, M. I. Popa, C. Sanchez, R. Backov, Chem. Mater., 2007, 19, 5786.

    56. [56]

      [56] K. Wilson, A. F. Lee, D. J. Macquarrie, J .H. Clark, Appl. Catal. A, 2002, 228, 127.

    57. [57]

      [57] M. Choi, R. Ryoo, Nat. Mater., 2003, 2, 473.

    58. [58]

      [58] R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B, 1999, 103, 7743.

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    5. [5]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    10. [10]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    11. [11]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    12. [12]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    13. [13]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(0)
  • Abstract views(1008)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return