Citation: Jingmi Wu, Liang Zeng, Dangguo Cheng, Fengqiu Chen, Xiaoli Zhan, Jinlong Gong. Synthesis of Pd nanoparticles supported on CeO2 nanotubes for CO oxidation at low temperatures[J]. Chinese Journal of Catalysis, ;2016, 37(1): 83-90. doi: 10.1016/S1872-2067(15)60913-5 shu

Synthesis of Pd nanoparticles supported on CeO2 nanotubes for CO oxidation at low temperatures

  • Corresponding author: Dangguo Cheng,  Jinlong Gong, 
  • Received Date: 30 April 2015
    Available Online: 27 May 2015

    Fund Project: 国家自然科学基金(21376209, 21376169) (21376209, 21376169) 浙江省自然科学重点基金(LZ13B060004) (LZ13B060004) 浙江省重点科技创新团队计划(2013TD07) (2013TD07) 高等学校学科创新引智计划(B06006). (B06006)

  • Developing efficient supported Pd catalysts and understanding their catalytic mechanism in CO oxidation are challenging research topics in recent years. This paper describes the synthesis of Pd nanoparticles supported on CeO2 nanotubes via an alcohol reduction method. The effect of the support morphology on the catalytic reaction was explored. Subsequently, the performance of the prepared catalysts was investigated toward CO oxidation reaction and characterized by Nitrogen sorption, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and CO-temperature-programmed desorption techniques. The results indicated that the catalyst of Pd on CeO2 nanotubes exhibits excellent activity in CO oxidation at low temperatures, due to its large surface area, the high dispersion of Pd species, the mesoporous and tubular structure of the CeO2-nanotube support, the abundant Ce3+, formation of Pd-O-Ce bonding, and enhanced metal-support interaction on the catalyst surface.
  • 加载中
    1. [1]

      [1] Y. Zeng, L. Qiao, Y. F. Bing, M. Wen, B. Zou, W. T. Zheng, T. Zhang, G. T. Zou, Sens. Actuators B, 2012, 173, 897.

    2. [2]

      [2] T. Y. Wang, L. D. Li, N. J. Guan, Fuel Process. Technol., 2013, 108, 41.

    3. [3]

      [3] X. D. Zhang, Z. P. Qu, F. L. Yu, Y. Wang, Chin. J. Catal., 2013, 34, 1277.

    4. [4]

      [4] Y. Zhou, Z. Y. Wang, C. J. Liu, Catal. Sci. Technol., 2015, 5, 69.

    5. [5]

      [5] G. J. Hutchings, M. Hartuta, Appl. Catal. A, 2005, 291, 2.

    6. [6]

      [6] J. M. Campelo, D. Luna, R. Luque, J. M. Marinas, A. A. Romero, ChemSusChem, 2009, 2, 18.

    7. [7]

      [7] P. Bera, A. Gayen, M. S. Hegde, N. P. Lalla, L. Spadaro, F. Frusteri, F. Arena, J. Phys. Chem. B, 2003, 107, 6122.

    8. [8]

      [8] S. N. Pavlova, V. A. Sadykov, N. N. Bulgakov, M. N. Bredikhin, J. Catal., 1996, 161, 517.

    9. [9]

      [9] A. M. Venezia, L. F. Liotta, G. Deganello, Z. Schay, D. Horvath, L. Guczi, Appl. Catal. A, 2001, 211, 167.

    10. [10]

      [10] S. Y. Wang, N. Li, R. M. Zhou, L. Y. Jin, G. S. Hu, J. Q. Lu, M. F. Luo, J. Mol. Catal. A, 2013, 374, 53.

    11. [11]

      [11] M. Q. Shen, G. X. Wei, H. M. Yang, J. Wang, X. Q. Wang, Fuel, 2013, 103, 869.

    12. [12]

      [12] G. Glaspell, H. M. A. Hassan, A. Elzatahry, V. Abdalsayed, M. S. El-Shall, Top. Catal., 2008, 47, 22.

    13. [13]

      [13] G. Q. Yi, Z. N. Xu, G. C. Guo, K. I. Tanaka, Y. Z. Yuan, Chem. Phys. Lett., 2009, 479, 128.

    14. [14]

      [14] J. Y. Luo, M. Meng, H. Xian, Y. B. Tu, X. G. Li, T. Ding, Catal. Lett., 2009, 133, 328.

    15. [15]

      [15] H. Q. Zhu, Z. F. Qin, W. J. Shan, W. J. Shen, J. G. Wang, J. Catal., 2005, 233, 41.

    16. [16]

      [16] M. S. Hegde, G. Madras, K. C. Patil, Acc. Chem. Res., 2009, 42, 704.

    17. [17]

      [17] Y. Zhu, S. R. Zhang, J. J. Shan, L. Nguyen, S. H. Zhan, X. L. Gu, F. Tao, ACS Catal., 2013, 3, 2627.

    18. [18]

      [18] D. Mendez, R. Vargas, C. Borras, S. Blanco, J. Mostany, B. R. Scharifker, Appl. Catal. B, 2015, 166, 529.

    19. [19]

      [19] Y. F. Su, Z. C. Tang, W. L. Han, P. Zhang, Y. Song, G. X. Lu, CrystEngComm, 2014, 16, 5189.

    20. [20]

      [20] K. B. Zhou, Z. Q. Yang, S. Yang, Chem. Mater., 2007, 19, 1215.

    21. [21]

      [21] T. Teranishi, M. Miyake, Chem. Mater., 1998, 10, 594.

    22. [22]

      [22] Y. H. Zhang, N. Zhang, Z. R. Tang, Y. J. Xu, ACS Sust. Chem. Eng., 2013, 1, 1258.

    23. [23]

      [23] X. B. Zhao, J. You, X. W. Lu, Z. G. Chen, J. Inorg. Mater., 2011, 26, 159.

    24. [24]

      [24] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, T. Siemieniewska, Pure Appl. Chem., 1985, 4, 603.

    25. [25]

      [25] M. F. Luo, Z. Y. Hou, X. X. Yuan, X. M. Zheng, Catal. Lett., 1998, 50, 205.

    26. [26]

      [26] H. Guo, Y. B. He, Y. P. Wang, L. X. Liu, X. J. Yang, S. X. Wang, Z. J. Huang, Q. Y. Wei, J. Mater. Chem. A, 2013, 1, 7494.

    27. [27]

      [27] M. Cargnello, N. L. Wieder, T. Montini, R. J. Gorte, P. Fornasiero, J. Am. Chem. Soc., 2010, 132, 1402.

    28. [28]

      [28] Z. R. Tang, X. Yin, Y. H. Zhang, N. Zhang, Y. J. Xu, Chin. J. Catal., 2013, 34, 1123.

    29. [29]

      [29] M. S. Jin, J. N. Park, J. K. Shon, Z. H. Li, M. Y. Yoon, H. J. Na, Y. K. Park, J. M. Kim, Res. Chem. Intermed., 2011, 37, 1181.

    30. [30]

      [30] K. V. R. Chary, D. Naresh, V. Vishwanathan, M. Sadakane, W. Ueda, Catal. Commun., 2007, 8, 471.

    31. [31]

      [31] T. Pillo, R. Zimmermann, P. Steiner, S. Hufner, J. Phys. Condens. Matter., 1997, 9, 3987.

    32. [32]

      [32] S. Hinokuma, H. Fujii, M. Okamoto, K. Ikeue, M. Machida, Chem. Mater., 2010, 22, 6183.

    33. [33]

      [33] E. M. Slavinskaya, R. V. Gulyaev, A. V. Zadesenets, O. A. Stonkus, V. I. Zaikovskii, Y. V. Shubin, S. V. Korenev, A. I. Boronina, Appl. Catal. B, 2015, 166-167, 91.

    34. [34]

      [34] K. R. Priolkar, P. Bera, P. R. Sarode, M. S. Hegde, S. Emura, R. Kumashiro, N. P. Lalla, Chem. Mater., 2002, 14, 2120.

    35. [35]

      [35] H. H. Liu, Y. Wang, A. P. Jia, S. Y. Wang, M. F. Luo, J. Q. Lu, Appl. Surf. Sci, 2014, 314, 725.

    36. [36]

      [36] L. Q. Liu, F. Zhou, L. G. Wang, X. J. Qi, F. Shi, Y. Q. Deng, J. Catal., 2010, 274, 1.

    37. [37]

      [37] M. S. Jin, J. N. Park, J. K. Shon, J. H. Kim, Z. H. Li, Y. K. Park, J. M. Kim, Catal. Today, 2012, 185, 183.

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    14. [14]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

Metrics
  • PDF Downloads(1)
  • Abstract views(500)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return