Citation: Teng Fu, Pei Hu, Tao Wang, Zhen Dong, Nianhua Xue, Luming Peng, Xuefeng Guo, Weiping Ding. High selectivity to p-chloroaniline in the hydrogenation of p-chloronitrobenzene on Ni modified carbon nitride catalyst[J]. Chinese Journal of Catalysis, ;2015, 36(11): 2030-2035. doi: 10.1016/S1872-2067(15)60904-4 shu

High selectivity to p-chloroaniline in the hydrogenation of p-chloronitrobenzene on Ni modified carbon nitride catalyst

  • Corresponding author: Weiping Ding, 
  • Received Date: 10 April 2015
    Available Online: 16 May 2015

  • A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydrogenation of p-chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocomposite catalyst had a hydrogen atom density of 0.65/nm2. It was active for hydrogenation but its activity was inferior to the hydrogen adsorbed on a Ni/Al2O3 catalyst. Catalytic tests showed that this catalyst possessed a lower activity than Ni/Al2O3 but the selectivity towards p-chloroaniline was above 99.9%. Even at high conversion, the catalyst maintained high selectivity, which was attributed to the unique surface property of the catalyst and the absence of a site for the adsorption of p-chloronitrobenzene, which prevents the C-Cl bond from breaking.
  • 加载中
    1. [1]

      [1] Fan G Y, Zhang L, Fu H Y, Yuan M L, Li R X, Chen H, Li X J. Catal Commun, 2010, 11: 451

    2. [2]

      [2] Shen J H, Chen Y W. J Mol Catal A, 2007, 273: 265

    3. [3]

      [3] Baumeister P, Blaser H U, Scherrer W. Stud Surf Sci Catal, 1991, 59: 321

    4. [4]

      [4] Mo M, Han L, Lv J G, Zhu Y, Peng L M, Guo X F, Ding W P. Chem Commun, 2010, 46: 2268

    5. [5]

      [5] Liang M H, Wang X D, Liu H Q, Liu H C, Wang Y. J Catal, 2008, 255: 335

    6. [6]

      [6] Liu H Q, Liang M H, Xiao C, Zheng N, Feng X H, Liu Y, Xie J L, Wang Y. J Mol Catal A, 2009, 308: 79

    7. [7]

      [7] Cárdenas-Lizana F, Gómez-Quero S, Keane M A. Catal Commun, 2008, 9: 475

    8. [8]

      [8] Han X X, Chen Q, Zhou R X. J Mol Catal A, 2007, 277: 210

    9. [9]

      [9] Han X D, Zhou R X, Lai G H, Zheng X M. Catal Today, 2004, 93: 433

    10. [10]

      [10] Liu A Y, Cohen M L. Science, 1989, 245: 841

    11. [11]

      [11] Kaner R B, Gilman J J, Tolbert S H. Science, 2005, 308: 1268

    12. [12]

      [12] Lee J S, Wang X Q, Luo H M, Baker G A, Dai S. J Am Chem Soc, 2009, 131: 4596

    13. [13]

      [13] Wang E G. Prog Mater Sci, 1997, 41: 241

    14. [14]

      [14] Wang Y, Wang X C, Antonietti M. Angew Chem Int Ed, 2012, 51: 68

    15. [15]

      [15] Teter D M, Hemley R J. Science, 1996, 271: 53

    16. [16]

      [16] Jin X, Balasubramanian V V, Selvan Sahthievel T, Sawant Dhanashri P, Chari Murugulla A, Lu G Q, Vinu A. Angew Chem Int Ed, 2009, 48: 7884

    17. [17]

      [17] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat Mater, 2009, 8: 76

    18. [18]

      [18] Zhang J, Grzelczak M, Hou Y D, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X C. Chem Sci, 2012, 3: 443

    19. [19]

      [19] Cui Y J, Huang J H, Fu X Z, Wang X C. Catal Sci Technol, 2012, 2: 1396

    20. [20]

      [20] Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A J, Zhang W M, Zhu Z H, Smith S C, Jaroniec M, Lu G Q, Qiao S Z. J Am Chem Soc, 2011, 133: 20116

    21. [21]

      [21] Gong Y T, Zhang P F, Xu X, Li Y, Li H R, Wang Y. J Catal, 2013, 297: 272

    22. [22]

      [22] Gong Y T, Li M M, Li H R, Wang Y. Green Chem, 2015, 17: 715

    23. [23]

      [23] Wang Y, Yao J, Li H R, Su D S, Antonietti M. J Am Chem Soc, 2011, 133: 2362

    24. [24]

      [24] Bian S W, Ma Z, Song W G. J Phys Chem C, 2009, 113: 8668

    25. [25]

      [25] Li X H, Wang X C, Antonietti M. Chem Sci, 2012, 3: 2170

    26. [26]

      [26] Xiao P, Zhao Y X, Wang T, Zhan Y Y, Wang H H, Li J L, Thomas A, Zhu J J. Chem Eur J, 2014, 20: 2872

    27. [27]

      [27] Gong Y T, Li M M, Wang Y. ChemSusChem, 2015, 8: 931

    28. [28]

      [28] Wang Y, Zhang J S, Wang X C, Antonietti M, Li H R. Angew Chem Int Ed, 2010, 49: 3356

    29. [29]

      [29] Wang Y, Li H R, Yao J, Wang X C, Antonietti M. Chem Sci, 2011, 2: 446

    30. [30]

      [30] Wang X C, Chen X F, Thomas A, Fu X Z, Antonietti M. Adv Mater, 2009, 21: 1609

    31. [31]

      [31] Lin Z Z, Wang X C. Angew Chem Int Ed, 2013, 52: 1735

    32. [32]

      [32] Zhang Y J, Mori T, Ye J H, Antonietti M. J Am Chem Soc, 2010, 132: 6294

    33. [33]

      [33] Fu T, Wang M, Cai W M, Cui Y M, Gao F, Peng L M, Chen W, Ding W P. ACS Catal, 2014, 4: 2536

    34. [34]

      [34] Qiu Y, Gao L. Chem Commun, 2003: 2378

    35. [35]

      [35] Hellgren N, Guo J H, Luo Y, Såthe C, Agui A, Kashtanov S, Nordgren J, Ågren H, Sundgren J E. Thin Solid Films, 2005, 471: 19

    36. [36]

      [36] Arrigo R, Havecker M, Schlogl R, Su D S. Chem Commun, 2008: 4891

  • 加载中
    1. [1]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    2. [2]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    3. [3]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    4. [4]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    5. [5]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

Metrics
  • PDF Downloads(0)
  • Abstract views(778)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return