Citation: Yiming Qiao, Zhilin Fan, Yanjiao Jiang, Na Li, Hao Dong, Ning He, Danhong Zhou. Structures and vibrational spectra of Ti-MWW zeolite upon adsorption of H2O and NH3: A density functional theory study[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1733-1741. doi: 10.1016/S1872-2067(15)60900-7 shu

Structures and vibrational spectra of Ti-MWW zeolite upon adsorption of H2O and NH3: A density functional theory study

  • Corresponding author: Danhong Zhou, 
  • Received Date: 8 April 2015
    Available Online: 18 May 2015

    Fund Project: 国家自然科学基金(21343010). (21343010)

  • The structures and vibrational spectroscopic features of framework Ti(IV) species in Ti-MWW zeolite upon adsorption of H2O and NH3 were investigated by density functional theory. The calculations were carried out on cluster models up to 36 tetrahedra at the B3LYP/6-31G(d,p) level of theory. The calculated results indicate that both Ti(OSi)4 and Ti(OSi)3OH species can interact with H2O or NH3 molecules to form five-coordinated complexes. The Ti(OSi)3OH species has higher Lewis acidity and adsorbs the ligands more easily than Ti(OSi)4. The Ti-specific band is attributed to the collective vibration of the antisymmetric stretching of Ti-O-Si bonds. The vibrational frequencies of coordinated Ti species can be divided into two regions: the Ti-specific vibration region and the hydroxyl group vibration region. After adsorption of H2O, the Ti-specific band of the Ti(OSi)4 species shifted from 960 to 970 cm-1, and the Ti-specific bands of the Ti(OSi)3OH species shifted from 990 cm-1 (T1 site) and 970 cm-1 (T3 site) to 980 cm-1. The frequencies of the corresponding NH3 adducts were about 5 cm-1 higher. The Ti(OSi)3OH species can also form hydrogen bonded complexes with H2O and NH3 through Ti-OH, resulting in the hydroxyl stretching band of Ti-OH red shifting by 500-1100 cm-1 and appearing in the 2700-3200 cm-1 region.
  • 加载中
    1. [1]

      [1] Clerici M G, Bellussi G, Romano U. J Catal, 1991, 129: 159

    2. [2]

      [2] Tatsumi T, Nakamura M, Negishi S, Tominaga H. J Chem Soc, Chem Commun, 1990: 476

    3. [3]

      [3] Bellussi G, Carati A, Clerici M G, Maddinelli G, Millini R. J Catal, 1992, 133: 220

    4. [4]

      [4] Clerici M G, Ingallina P. J Catal, 1993, 140: 71

    5. [5]

      [5] Wu P, Tatsumi T, Komatsu T, Yashima T. J Phys Chem B, 2001, 105: 2897

    6. [6]

      [6] Wu P, Liu Y M, He M Y, Tatsumi T. J Catal, 2004, 228: 183

    7. [7]

      [7] Wang L L, Liu Y M, Xie W, Zhang H J, Wu H H, Jiang Y W, He M Y, Wu P. J Catal, 2007, 246: 205

    8. [8]

      [8] Zhao S, Xie W, Liu Y M, Wu P. Chin J Catal (赵松, 谢伟, 刘月明, 吴鹏. 催化学报), 2011, 32:179

    9. [9]

      [9] Fan W B, Wu P, Tatsumi T. J Catal, 2008, 256: 62

    10. [10]

      [10] Bellussi G, Rigutto M S. Stud Surf Sci Catal, 2001, 137: 911

    11. [11]

      [11] Soult A S, Poore D D, Mayo E I, Stiegman A E. J Phys Chem B, 2001, 105: 2687

    12. [12]

      [12] Notari B. Adv Catal, 1996, 41: 253

    13. [13]

      [13] Vayssilov G N. Catal Rev-Sci Eng, 1997, 39: 209

    14. [14]

      [14] Sinclair P E, Catlow C R A. J Phys Chem B, 1999, 103: 1084

    15. [15]

      [15] Nakagawa K, Kajita C, Ikenaga N, Suzuki T, Kobayashi T, Nishitani-Gamo M, Ando T. J Phys Chem B, 2003, 107: 4080

    16. [16]

      [16] To J, Sokol A A, French S A, Catlow C R A. J Phys Chem C, 2008, 112: 7173

    17. [17]

      [17] Bonino F, Damin A, Ricchiardi G, Ricci M, Spanò G, D'Aloisio R, Zecchina A, Lamberti C, Prestipino C, Bordiga S. J Phys Chem B, 2004, 108: 3573

    18. [18]

      [18] Wu P, Nuntasri D, Ruan J F, Liu Y M, He M Y, Fan W B, Terasaki O, Tatsumi T. J Phys Chem B, 2004, 108: 19126

    19. [19]

      [19] Bolis V, Bordiga S, Lamberti C, Zecchina A, Carati A, Rivetti F, Spanò G, Petrini G. Microporous Mesoporous Mater, 1999, 30: 67

    20. [20]

      [20] Bordiga S, Coluccia S, Lamberti C, Marchese L, Zecchina A, Boscherini F, Buffa F, Genoni F, Leofanti G. J Phys Chem, 1994, 98: 4125

    21. [21]

      [21] Damin A, Bordiga S, Zecchina A, Lamberti C. J Chem Phys, 2002, 117: 226

    22. [22]

      [22] Damin A, Bonino F, Ricchiardi G, Bordiga S, Zecchina A, Lamberti C. J Phys Chem B, 2002, 106: 7524

    23. [23]

      [23] Ricchiardi G, de Man A, Sauer J. Phys Chem Chem Phys, 2000, 2: 2195

    24. [24]

      [24] Bordiga S, Damin A, Bonino F, Zecchina A, Spanò G, Rivetti F, Bolis V, Prestipino C, Lamberti C. J Phys Chem B, 2002, 106: 9892

    25. [25]

      [25] Zhanpeisov N U, Anpo M. J Am Chem Soc, 2004, 126: 9439

    26. [26]

      [26] Gallo E, Bonino F, Swarbrick J C, Petrenko T, Piovano A, Bordiga S, Gianolio D, Groppo E, Neese F, Lamberti C, Glatzel P. ChemPhysChem, 2013, 14: 79

    27. [27]

      [27] Yang G, Zhou L J, Liu X C, Han X W, Bao X H. Chem Eur J, 2011, 17: 1614

    28. [28]

      [28] Zhou D H, Zhang H J, Zhang J J, Sun X M, Li H C, He N, Zhang W P. Microporous Mesoporous Mater, 2014, 195: 216

    29. [29]

      [29] Leonowicz M E, Lawton J A, Lawton S L, Rubin M K. Science, 1994, 264: 1910

    30. [30]

      [30] Lawton S L, Leonowicz M E, Partridge P D, Chu P, Rubin M K. Microporous Mesoporous Mater, 1998, 23: 109

    31. [31]

      [31] Becke A D. Phys Rev A, 1988, 38: 3098

    32. [32]

      [32] Lee C, Yang W, Parr R G. Phys Rev B, 1988, 37: 785

    33. [33]

      [33] Boys S F, Bernardi F. Mol Phys, 1970, 19: 553

    34. [34]

      [34] Scott A P, Radom L. J Phys Chem, 1996, 100: 16502

    35. [35]

      [35] Foster J P, Weinhold F. J Am Chem Soc, 1980, 102: 7211

    36. [36]

      [36] Reed A E, Weinstock R B, Weinhold F. J Chem Phys, 1985, 83: 735

    37. [37]

      [37] Reed A E, Curtiss L A, Weinhold F. Chem Rev, 1988, 88: 899

    38. [38]

      [38] Carpenter J E, Weinhold F. J Mol Struct:THEOCHEM, 1988, 169: 41

    39. [39]

      [39] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Naka H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gompert R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09, Revision D. 01, Gaussian, Inc. Wallingford, CT, 2010

    40. [40]

      [40] Bellussi G, Carati A, Clerici M G, Maddinelli G, Millini R. J Catal, 1992, 133: 220

    41. [41]

      [41] Wang Y L, Xing S Y, Cao L, Wang S P, Zhou D H. Chin J Catal (王伊蕾, 邢双英, 曹亮, 王善鹏, 周丹红. 催化学报), 2009, 30: 24

  • 加载中
    1. [1]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    12. [12]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    13. [13]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    17. [17]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    18. [18]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    19. [19]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    20. [20]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

Metrics
  • PDF Downloads(0)
  • Abstract views(917)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return