Citation: Milad Jourshabani, Alireza Badiei, Negar Lashgari, Ghodsi Mohammadi Ziarani. Highly selective production of phenol from benzene over mesoporous silica-supported chromium catalyst: Role of response surface methodology in optimization of operating variables[J]. Chinese Journal of Catalysis, ;2015, 36(11): 2020-2029. doi: 10.1016/S1872-2067(15)60898-1 shu

Highly selective production of phenol from benzene over mesoporous silica-supported chromium catalyst: Role of response surface methodology in optimization of operating variables

  • Corresponding author: Alireza Badiei, 
  • Received Date: 23 April 2015
    Available Online: 18 May 2015

  • A Cr/SBA-16 catalyst was prepared using Cr(NO3)3 as a precursor and mesoporous silica SBA-16 as a support via a simple impregnation method. The catalyst was characterized using wide-angle X-ray diffraction (XRD), low-angle XRD, N2 adsorption-desorption, transmission electron microscopy, and ultraviolet-visible spectroscopy. The catalyst activity was investigated in the direct hydroxylation of benzene to phenol using H2O2 as the oxidant. Various operating variables, namely reaction temperature, reaction time, amount of H2O2, and catalyst dosage, were optimized using central composite design combined with response surface methodology (RSM). The results showed that the correlation between the independent parameters and phenol yield was represented by a second-order polynomial model. The high correlation coefficient (R2), i.e., 0.985, showed that the data predicted using RSM were in good agreement with the experimental results. The optimization results also showed that high selectivity for phenol was achieved at the optimized values of the operating variables: reaction temperature 324 K, reaction time 8 h, H2O2 content 3.28 mL, and catalyst dosage 0.09 g. This study showed that RSM was a reliable method for optimizing process variables for benzene hydroxylation to phenol.
  • 加载中
    1. [1]

      [1] Zhang J, Tang Y, Li G Y, Hu C W. Appl Catal A, 2005, 278: 251

    2. [2]

      [2] Stöckmann M, Konietzni F, Notheis J U, Voss J, Keune W, Maier W F. Appl Catal A, 2001, 208: 343

    3. [3]

      [3] Kubacka A, Wang Z L, Sulikowski B, Cortés Corberán V. J Catal, 2007, 250: 184

    4. [4]

      [4] Pirutko L V, Uriarte A K, Chernyavsky V S, Kharitonov A S, Panov G I. Microporous Mesoporous Mater, 2001, 48: 345

    5. [5]

      [5] Panov G I, Sheveleva G A, Kharitonov A S, Romannikov V N, Vostrikova L A. Appl Catal A, 1992, 82: 31

    6. [6]

      [6] Okamura J, Nishiyama S, Tsuruya S, Masai M. J Mol Catal A, 1998, 135: 133

    7. [7]

      [7] Lee C W, Lee W J, Park Y K, Park S-E. Catal Today, 2000, 61: 137

    8. [8]

      [8] Lemke K, Ehrich H, Lohse U, Berndt H, Jähnisch K. Appl Catal A, 2003, 243: 41

    9. [9]

      [9] Jiang T, Wang W T, Han B X. New J Chem, 2013, 37: 1654

    10. [10]

      [10] Song S Q, Jiang S J, Rao R C, Yang H X, Zhang A M. Appl Catal A, 2011, 401: 215

    11. [11]

      [11] Arab P, Badiei A, Koolivand A, Mohammadi Ziarani G. Chin J Catal (催化学报), 2011, 32: 258

    12. [12]

      [12] Xu J, Jiang Q, Chen T, Wu F, Li Y-X. Catal Sci Technol, 2015, 5: 1504

    13. [13]

      [13] Parida K M, Rath D. Appl Catal A, 2007, 321: 101

    14. [14]

      [14] Nemati Kharat A, Moosavikia S, Tamaddoni Jahromi B, Badiei A. J Mol Catal A, 2011, 348: 14

    15. [15]

      [15] Lee C-H, Lin T-S, Mou C-Y. J Phys Chem B, 2003, 107: 2543

    16. [16]

      [16] Taguchi A, Schüth F. Microporous Mesoporous Mater, 2005, 77: 1

    17. [17]

      [17] Weitkamp J, Hunger M, Rymsa U. Microporous Mesoporous Mater, 2001, 48: 255

    18. [18]

      [18] Corma A. Chem Rev, 1997, 97: 2373

    19. [19]

      [19] Rivera-Muñoz E M, Huirache-Acuña R. Int J Mol Sci, 2010, 11: 3069

    20. [20]

      [20] Zhu Y J, Dong Y L, Zhao L N, Yuan F L. J Mol Catal A, 2010, 315: 205

    21. [21]

      [21] Dong Y L, Zhan X L, Niu X Y, Li J, Yuan F L, Zhu Y J, Fu H G. Microporous Mesoporous Mater, 2014, 185: 97

    22. [22]

      [22] Spinacé E V, Schuchardt U, Cardoso D. Appl Catal A, 1999, 185: L193

    23. [23]

      [23] Yuvaraj S, Palanichamy M, Krishnasamy V. Chem Commun, 1996: 2707

    24. [24]

      [24] Tagawa T, Uchida H, Goto S. React Kinet Catal Lett, 1991, 44: 25

    25. [25]

      [25] Zhang W Z, Wang J L, Tanev P T, Pinnavaia T J. Chem Commun, 1996: 979

    26. [26]

      [26] Li Y, Wang Z, Chen R Z, Wang Y, Xing W H, Wang J, Huang J. Catal Commun, 2014, 55: 34

    27. [27]

      [27] Leng Y, Liu J, Jiang P P, Wang J. Chem Eng J, 2014, 239: 1

    28. [28]

      [28] Xu D, Jia L H, Guo X F. Chin J Catal (徐丹, 贾丽华, 郭祥峰. 催化学报), 2013, 34: 341

    29. [29]

      [29] Ding G D, Wang W T, Jiang T, Han B X, Fan H L, Yang G Y. ChemCatChem, 2013, 5: 192

    30. [30]

      [30] Zhao P P, Leng Y, Wang J. Chem Eng J, 2012, 204-206: 72

    31. [31]

      [31] Tang Y, Zhang J. J Serbian Chem Soc, 2006, 71: 111

    32. [32]

      [32] Olutoye M A, Hameed B H. Appl Catal A, 2009, 371: 191

    33. [33]

      [33] Lazić Ž R. Design and Analysis of Experiments. Section 2.3. New York: Wiley Online Library, 2004

    34. [34]

      [34] Mason R L, Gunst R F, Hess J L. Statistical Design and Analysis of Experiments: With Applications to Engineering and Science. 2nd Ed. New York: John Wiley & Sons, 2003

    35. [35]

      [35] Kosuge K, Kikukawa N, Takemori M. Chem Mater, 2004, 16: 4181

    36. [36]

      [36] Hosseinpour V, Kazemeini M, Mohammadrezaee A. Appl Catal A, 2011, 394: 166

    37. [37]

      [37] Bobet J-L, Desmoulins-Krawiec S, Grigorova E, Cansell F, Chevalier B. J Alloys Compd, 2003, 351: 217

    38. [38]

      [38] Weckhuysen B M, Wachs I E, Schoonheydt R A. Chem Rev, 1996, 96: 3327

    39. [39]

      [39] Jian M, Zhu L F, Wang J Y, Zhang J, Li G Y, Hu C W. J Mol Catal A, 2006, 253: 1

    40. [40]

      [40] Dapurkar S E, Sakthivel A, Selvam P. J Mol Catal A, 2004, 223: 241

    41. [41]

      [41] Neumann R, Levin-Elad M. Appl Catal A, 1995, 122: 85

    42. [42]

      [42] Huybrechts D R C, Buskens P L, Jacobs P A. J Mol Catal, 1992, 71: 129

    43. [43]

      [43] Iwamoto M, Hirata J, Matsukami K, Kagawa S. J Phys Chem, 1983, 87: 903

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    15. [15]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    16. [16]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

Metrics
  • PDF Downloads(0)
  • Abstract views(307)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return