Citation: Zhao Liu, Yan Gao, Ze Yu, Min Zhang, Jianhui Liu. Effects of Br substituent on catalytic performance of Ru-bda (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) catalysts for water oxidation[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1742-1749. doi: 10.1016/S1872-2067(15)60895-6 shu

Effects of Br substituent on catalytic performance of Ru-bda (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) catalysts for water oxidation

  • Corresponding author: Yan Gao,  Jianhui Liu, 
  • Received Date: 8 April 2015
    Available Online: 18 May 2015

    Fund Project: 国家自然科学基金(20923006, 21120102036, 21106015和91233201) (20923006, 21120102036, 21106015和91233201) 国家重点基础研究发展计划(973计划, 2014CB239402) (973计划, 2014CB239402) 中央高校基本科研业务专项基金(DUT13RC(3)103, DUT15LK08). (DUT13RC(3)103, DUT15LK08)

  • A series of new Ru-bda catalysts with Br modification on the equatorial ligand, [Ru(Ln)(picoline)2] (H2L1 = 4-Br-2,2'-bipyridine-6,6'-dicarboxylic acid (4-Br-bda), 2; H2L2 = 4,4'-diBr-bda, 3) and [Ru(L1)(isoquinoline)2] 5, were synthesized for catalytic water oxidation. Compared with the un-substituted catalysts, the catalysts modified with Br displayed a marked change in the catalytic activities and reaction orders. The results confirm that the electronic effect of Br has a large effect on the kinetics and leads to the change in reaction orders.
  • 加载中
    1. [1]

      [1] Blankenship R E, Tiede D M, Baber J, Bradvig G M, Fleming G, Ghiraedi M, Gunner M R, Junge W, Kramer D M, Melic A, Moore T A, Moser C C, Nocera D G, Nozik A J, Ort D R, Parson W W, Prince R C, Sayre R T. Science, 2011, 332: 805

    2. [2]

      [2] Cox N, Retegan M, Neese F, Pantazis D A, Boussac A, Lubitz W. Science, 2014, 345: 804

    3. [3]

      [3] Barnett S M, Goldberg K I, Mayer M J. Nat Chem, 2014, 4: 498

    4. [4]

      [4] Alstrum-Acevedo J H, Brennaman M K, Meyer T J. Inorg Chem, 2005, 44: 6802

    5. [5]

      [5] Sun L, Hammarstrom L, Åkermark B, Styring S. Chem Soc Rev, 2001, 30: 36

    6. [6]

      [6] Lewis N S, Nocera D G. Proc Natl Acad Sci, 2006, 103: 15729

    7. [7]

      [7] Ruttinger W, Dismukes G C. Chem Rev, 1997, 97: 1

    8. [8]

      [8] Huynh M H, Meyer T J. Chem Rev, 2007, 107: 5004

    9. [9]

      [9] Dau H, Zaharieva I. Acc Chem Res, 2009, 42: 1861

    10. [10]

      [10] Wada T, Tsuge K, Tanaka K. Angew Chem Int Ed, 2000, 39: 1479

    11. [11]

      [11] Concepcion J, Jurss J W, Templeton J L, Meyer T J. Proceed Nat Acad Sci, 2008, 105: 17632

    12. [12]

      [12] Geletii Y V, Bogdan B, Kogerler P, Hillesheim D A, Musaev D G, Hill C L. Angew Chem Int Ed, 2008, 47: 3896

    13. [13]

      [13] Robinson D M, Go Y B, Mu M M, Gardner G, Zhang Z J, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes G C. J Am Chem Soc, 2013,135: 3494

    14. [14]

      [14] Mucherman J L, Polyansky D E, Wada T, Tanka K, Fujita E. Inorg Chem, 2008, 47: 1787

    15. [15]

      [15] Sala X, Maji S, Bofil R, Garcla-Anton J, Escriche L, Llobet A. Acc Chem Res, 2014, 47: 504

    16. [16]

      [16] Brimblecombe R, Dismukes G C, Swiegers G F, Spiccia L. Dalton Trans, 2009, 9374

    17. [17]

      [17] Hull J H, Balcells D, Blakemore J D, Incarvito C D, Eisenstein O, Brudvig G W, Carbtree R H. J Am Chem Soc, 2009, 131: 8730

    18. [18]

      [18] McDaniel N D, Coughlin F J, Tinker L L, Bernhard S. J Am Chem Soc, 2008, 130: 210

    19. [19]

      [19] Wasylenko D J, Ganesamoorthy G, Borau-Garcia J, Berlinguette C P. Chem Commun, 2011, 47: 4249

    20. [20]

      [20] Gao Y, Åkermark T, Liu J, Sun L, Åkermark B. J Am Chem Soc, 2009, 131: 8726

    21. [21]

      [21] Hurst J K. Coord Chem Rev, 2005, 249: 313

    22. [22]

      [22] Brimblecombe R, Swiegers G F, Dismukes G C, Spiccia L. Angew Chem Int Ed, 2008, 47: 7335

    23. [23]

      [23] Yano J, Yachandra V. Chem Rev, 2014, 114: 4175

    24. [24]

      [24] Yagi M, Kaneko M. Chem Rev, 2001, 101: 21

    25. [25]

      [25] Concepcion J J, Jurss J W, Templeton J L, Meyer T J. J Am Chem Soc, 2008, 130: 16462

    26. [26]

      [26] Zong R, Thummel R P. J Am Chem Soc, 2013, 127: 12802

    27. [27]

      [27] Duan L, Fisher A, Xu Y, Sun L. J Am Chem Soc, 2009, 131: 10397

    28. [28]

      [28] Duan L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L. Nat Chem, 2012, 4: 418

    29. [29]

      [29] Jiang Y, Li F, Huang F, Zhang B B, Sun L C. Chin J Catal (姜毅, 李斐, 黄芳, 张彪彪, 孙立成. 催化学报), 2013, 34: 1489

    30. [30]

      [30] Dulière E, Deviller M, Marchand-Brynaert J. Organometallics, 2003, 22: 804

    31. [31]

      [31] Donnici C L, Maxinio Filho D H, Moreira L L C, Teixeira dox Reis G, Cordeiro E, Ferreira de Oliveira I M, Carvalho S, Paniago E B. J Braz Chem Soc, 1998, 9: 455

    32. [32]

      [32] Regnouf de J B, Papet A L, Marsura A J. J Heterocyclic Chem, 1994, 31: 1069

    33. [33]

      [33] Mukkala V M, Kankare J J. Helv Chim Acta, 1992, 75: 1578

    34. [34]

      [34] Duan L, Wang L, Inge A K, Fisher A, Zou X, Sun L. Inorg Chem, 2013, 52: 7844

    35. [35]

      [35] Duan L, Fisher A, Xue Y H, Sun L. J Am Chem Soc, 2009, 131: 10397

    36. [36]

      [36] Dovletoglou A, Adeyemi S A, Meyer T J. Inorg Chem, 1996, 35: 4120

    37. [37]

      [37] Duan L, Xu Y, Zhang P, Wang M, Sun L. Inorg Chem, 2010, 49: 209

  • 加载中
    1. [1]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    2. [2]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    15. [15]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    20. [20]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(1)
  • Abstract views(473)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return