Citation: Chin-Te Hung, Zih-Hao Liou, Pitchaimani Veerakumar, Pei-Hao Wu, Tuan-Chi Liu, Shang-Bin Liu. Ordered mesoporous carbon supported bifunctional PtM (M = Ru, Fe, Mo) electrocatalysts for a fuel cell anode[J]. Chinese Journal of Catalysis, ;2016, 37(1): 43-53. doi: 10.1016/S1872-2067(15)60878-6 shu

Ordered mesoporous carbon supported bifunctional PtM (M = Ru, Fe, Mo) electrocatalysts for a fuel cell anode

  • Corresponding author: Tuan-Chi Liu,  Shang-Bin Liu, 
  • Received Date: 30 March 2015
    Available Online: 27 April 2015

    Fund Project: 台湾科技支撑项目(NSC98-2113-M-001-017-MY3, NSC101-2113-M-001-020-MY3). (NSC98-2113-M-001-017-MY3, NSC101-2113-M-001-020-MY3)

  • The deposition onto an ordered mesoporous carbon (OMC) support of well dispersed PtM (M = Ru, Fe, Mo) alloy nanoparticles (NPs) were synthesized by a direct replication method using SBA-15 as the hard template, furfuryl alcohol and trimethylbeneze as the primary carbon sources, and metal acetylacetonate as the alloying metal precursor and secondary carbon source. The physicochemical properties of the PtM-OMC catalysts were characterized by N2 adsorption-desorption, X-ray diffraction, transmission electron microscopy, X-ray absorption near edge structure, and extended X-ray absorption fine structure. The alloy PtM NPs have an average size of 2-3 nm and were well dispersed in the pore channels of the OMC support. The second metal (M) in the PtM NPs was mostly in the reduced state, and formed a typical core (Pt)-shell (M) structure. Cyclic voltammetry measurements showed that these PtM-OMC electrodes had excellent electrocatalytic activities and tolerance to CO poisoning during the methanol oxidation reaction, which surpassed those of typical activated carbon-supported PtRu catalysts. In particular, the PtFe-OMC catalyst, which exhibited the best performance, can be a practical anodic electrocatalyst in direct methanol fuel cells due to its superior stability, excellent CO tolerance, and low production cost.
  • 加载中
    1. [1]

      [1] H. S. Liu, C. J. Song, L. Zhang, J. J. Zhang, H. J. Wang, D. P. Wilkinson, J. Power Sources, 2006, 155, 95.

    2. [2]

      [2] Y. H. Lee, G. Lee, J. H. Shim, S. Hwang, J. Kwak, K. Lee, H. Song, J. T. Park, Chem. Mater., 2006, 18, 4209.

    3. [3]

      [3] K. W. Wang, S. Y. Huang, C. T. Yeh, J. Phys. Chem. C, 2007, 111, 5096.

    4. [4]

      [4] S. Wasmus, A. Küver, J. Electroanal. Chem., 1999, 461, 14.

    5. [5]

      [5] A. S. Aricò, S. Srinivasan, V. Antonucci, Fuel. Cells, 2001, 1, 133.

    6. [6]

      [6] N. P. Lebedeva, G. J. M. Janssen, Electrochim. Acta, 2005, 51, 29.

    7. [7]

      [7] F. B. Su, J. H. Zeng, X. Y. Bao, Y. S. Yu, J. Y. Lee, X. S. Zhao, Chem. Mater., 2005, 17, 3960.

    8. [8]

      [8] C. Z. Yang, M. Zhou, L. Gao, ACS Appl. Mater. Interfaces, 2014, 6, 18938.

    9. [9]

      [9] S. H. Liu, R. F. Lu, S. J. Huang, A. Y. Lo, S. H. Chien, S. B. Liu, Chem. Commun., 2006, 3435.

    10. [10]

      [10] S. H. Liu, W. Y. Yu, C. H. Chen, A. Y. Lo, B. J. Hwang, S. H. Chien, S. B. Liu, Chem. Mater., 2008, 20, 1622.

    11. [11]

      [11] M. L. Lin, M. Y. Lo, C. Y. Mou, J. Phys. Chem. C, 2009, 113, 16158.

    12. [12]

      [12] J. H. Zeng, F. B. Su, Y. F. Han, Z. Q. Tian, C. K. Poh, Z. L. Liu, J. Y. Lin, J. Y. Lee, X. S. Zhao, J. Phys. Chem. C, 2008, 112, 15908.

    13. [13]

      [13] Q. G. He, B. Shyam, M. Nishijima, X. F. Yang, B. Koel, F. Ernst, D. Ramaker, S. Mukerjee, J. Phys. Chem. C, 2013, 117, 1457.

    14. [14]

      [14] W. M. Chen, G. Q. Sun, Z. X. Liang, Q. Mao, H. Q. Li, G. X. Wang, Q. Xin, H. Chang, C. H. Pak, D. Seung, J. Power Sources, 2006, 160, 933.

    15. [15]

      [15] P. Piela, C. Eickes, E. Brosha, F. Garzon, P. Zelenay, J. Electrochem. Soc., 2004, 151, A2053.

    16. [16]

      [16] A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki, J. Power. Sources, 2004, 130, 42.

    17. [17]

      [17] L. Carrette, K. A. Friedrich, U. Stimming, ChemPhysChem, 2000, 1, 162.

    18. [18]

      [18] V. Mehta, J. S. Cooper, J. Power Sources, 2003, 114, 32.

    19. [19]

      [19] H. Chang, S. H. Joo, C. Pak, J. Mater. Chem., 2007, 17, 3078.

    20. [20]

      [20] Y. Wan, H. F. Yang, D. Y. Zhao, Acc. Chem. Res., 2006, 39, 423.

    21. [21]

      [21] X. S. Zhao, F. B. Su, Q. F. Yan, W. P. Guo, X. Y. Bao, L. Lv, Z. C. Zhou, J. Mater. Chem., 2006, 16, 637.

    22. [22]

      [22] A. H. Lu, F. Schüth, Adv. Mater., 2006, 18, 1793.

    23. [23]

      [23] C. D. Liang, Z. J. Li, S. Dai, Angew. Chem. Int. Ed., 2008, 47, 3696.

    24. [24]

      [24] T. Y. Ma, L. Liu, Z. Y. Yuan, Chem. Soc. Rev., 2013, 42, 3977.

    25. [25]

      [25] J. C. Ndamanisha, L. P. Guo, Anal. Chim. Acta, 2012, 747, 19.

    26. [26]

      [26] P. K. Tripathi, L. Gan, M. Liu, N. N. Rao, J. Nanosci. Nanotechnol., 2014, 14, 1823.

    27. [27]

      [27] Z. B. Lei, S. Y. Bai, Y. Xiao, L. Q. Dang, L. Z. An, G. N. Zhang, Q. Xu, J. Phys. Chem. C, 2008, 112, 722.

    28. [28]

      [28] G. S. Chai, I. S. Shin, J. S. Yu, Adv. Mater., 2004, 16, 2057.

    29. [29]

      [29] J. W. Ren, J. Ding, K. Y. Chan, H. T. Wang, Chem. Mater., 2007, 19, 2786.

    30. [30]

      [30] G. W. Zhao, J. P. He, C. X. Zhang, J. H. Zhou, X. Chen, T. Wang, J. Phys. Chem. C, 2008, 112, 1028.

    31. [31]

      [31] S. H. Liu, C. C. Chiang, M. T. Wu, S. B. Liu, Int. J. Hydrogen Energy, 2010, 35, 8149.

    32. [32]

      [32] S. H. Liu, M. T. Wu, Y. H. Lai, C. C. Chiang, Y. Yu, S. B. Liu, J. Mater. Chem., 2011, 21, 12489.

    33. [33]

      [33] A. Y. Lo, C. T. Hung, N. Yu, C. T. Kuo, S. B. Liu, Appl. Energy, 2012, 100, 66.

    34. [34]

      [34] C. Y. Wong, S. K. Chen, A. Y. Lo, C. M. Tseng, C. Y. Lin, S. B. Liu, Int. J. Hydrogen Energy, 2013, 38, 12984.

    35. [35]

      [35] P. Veerakumar, R. Madhu, S. M. Chen, V. Veeramani, C. T. Hung, P. H. Tang, C. B. Wang, S. B. Liu, J. Mater. Chem. A, 2014, 2, 16015.

    36. [36]

      [36] P. Veerakumar, R. Madhu, S. M. Chen, C. T. Hung, P. H. Tang, C. B. Wang, S. B. Liu, Analyst, 2014, 139, 4994.

    37. [37]

      [37] R. Madhu, V. Veeramani, S. M. Chen, P. Veerakumar, S. B. Liu, Chem. Eur. J., 2015, 21, 8200.

    38. [38]

      [38] R. Bashyam, P. Zelenay, Nature, 2006, 443, 63.

    39. [39]

      [39] A. Y. Lo, S. H. Liu, S. J. Huang, C. T. Kuo, S. B. Liu, Dimond. Relat. Mater., 2008, 17, 1541.

    40. [40]

      [40] Z. Chen, D. C. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci., 2011, 4, 3167.

    41. [41]

      [41] C. T. Hsieh, J. L. Wei, J. Y. Lin, B. H. Yang, Dimond. Relat. Mater., 2011, 20, 1065.

    42. [42]

      [42] S. H. Liu, F. S. Zheng, J. R. Wu, Appl. Catal. B, 2011, 108-109, 81.

    43. [43]

      [43] M. Lefèvre, J. P. Dodelet, ECS Trans., 2012, 45, 35.

    44. [44]

      [44] D. C. Higgins, Z. Chen, Can. J. Chem. Eng., 2013, 91, 1881.

    45. [45]

      [45] L. Qu, Y. Liu, J. B. Baek, L. Dai, ACS Nano, 2010, 4, 1321.

    46. [46]

      [46] M. Zhang, L. Dai, Nano Energy, 2012, 1, 514.

    47. [47]

      [47] X. Y. Sun, R. Wang, D. S. Su, Chin. J. Catal., 2013, 34, 508.

    48. [48]

      [48] X. J. Zhou, J. L. Qiao, L. Yang, J. J. Zhang, Adv. Energy Mater., 2014, 4, 1301523.

    49. [49]

      [49] C. T. Hung, N. Y. Yu, C. T. Chen, P. H. Wu, X. X. Han, Y. S. Kao, T. C. Liu, F. Deng, A. M Zheng, S. B. Liu, J. Mater. Chem. A, 2014, 2, 20030.

    50. [50]

      [50] D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 279, 548.

    51. [51]

      [51] E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, D. Haskel, Physica B, 1995, 208-209, 117.

    52. [52]

      [52] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, M. J. Eller, Phys. Rev. B, 1995, 52, 2995.

    53. [53]

      [53] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.

    54. [54]

      [54] S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, J. Phys. Chem. B, 2002, 106, 4640.

    55. [55]

      [55] L. Vegard, Z. Phys., 1921, 5, 17.

    56. [56]

      [56] S. Abe, T. Inoue, K. Watanabe, J. Alloys Compd., 2003, 358, 177.

    57. [57]

      [57] S. Mahadevan, S. P. Behera, G. Gnanaprakash, T. Jayakumar, J. Philip, B. P. C. Rao, J. Phys. Chem. Solids, 2012, 73, 867.

    58. [58]

      [58] I. Kazeminezhad, S. Mosivand, Acta Phys. Pol. A, 2014, 125, 1210.

    59. [59]

      [59] O. Marin-Flores, L. Scudiero, S. Ha, Surf. Sci., 2009, 603, 2327.

    60. [60]

      [60] L. Kumari, Y. R. Ma, C. C. Tsai, Y. W. Lin, S. Y. Wu, K. W. Cheng, Y. Liou, Nanotechnology, 2007, 18, 115717.

    61. [61]

      [61] Y. Iwasawa, X-ray Absorption Fine Structure for Catalyst and Surfaces, World Scientific, Singapore, 1996.

    62. [62]

      [62] B. J. Hwang, L. S. Sarma, J. M. Chen, C. H. Chen, S. C. Shih, G. R. Wang, D. G. Liu, J. F. Lee, M. T. Tang, J. Am. Chem. Soc., 2005, 127, 11140.

    63. [63]

      [63] B. J. Hwang, C. H. Chen, L. S. Sarma, J. M. Chen, S. C. Shih, G. R. Wang, M. T. Tang, D. G. Liu, J. F. Lee, B. J. Hwang, J. Phys. Chem. B, 2006, 110, 6475.

    64. [64]

      [64] C. Bock, M. A. Blakely, B. MacDougall, Electrochim. Acta, 2005, 50, 2401.

    65. [65]

      [65] S. Y. Huang, S. M. Chang, C. T. Yeh, J. Phys. Chem. B, 2006, 110, 234.

    66. [66]

      [66] Z. L. Liu, X. Y. Ling, B. Guo, L. Hong, J. Y. Lee, J. Power Sources, 2007, 167, 272.

    67. [67]

      [67] J. Prabhuram, T. S. Zhao, Z. X. Liang, R. Chen, Electrochim. Acta, 2007, 52, 2649.

    68. [68]

      [68] Z. L. Liu, X. Y. Ling, X. D. Su, J. Y. Lee, J. Phys. Chem. B, 2004, 108, 8234.

    69. [69]

      [69] T. C. Deivaraj, J. Y. Lee, J. Power Sources, 2005, 142, 43.

    70. [70]

      [70] W. F. Lin, M. S. Zei, M. Eiswirth, G. Ertl, T. Iwasita, W. Vielstich, J. Phys. Chem. B, 1999, 103, 6968.

    71. [71]

      [71] T. Frelink, W. Visscher, J. A. R. van Veen, Langmuir, 1996, 12, 3702.

    72. [72]

      [72] C. Lu, C. Rice, R. I. Masel, P. K. Babu, P. Waszczuk, H. S. Kim, E. Oldfield, A. Wieckowski, J. Phys. Chem. B, 2002, 106, 9581.

    73. [73]

      [73] P. K. Babu, H. S. Kim, E. Oldfield, A. Wieckowski, J. Phys. Chem. B, 2003, 107, 7595.

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    13. [13]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    14. [14]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(0)
  • Abstract views(502)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return