Citation:
Chin-Te Hung, Zih-Hao Liou, Pitchaimani Veerakumar, Pei-Hao Wu, Tuan-Chi Liu, Shang-Bin Liu. Ordered mesoporous carbon supported bifunctional PtM (M = Ru, Fe, Mo) electrocatalysts for a fuel cell anode[J]. Chinese Journal of Catalysis,
;2016, 37(1): 43-53.
doi:
10.1016/S1872-2067(15)60878-6
-
The deposition onto an ordered mesoporous carbon (OMC) support of well dispersed PtM (M = Ru, Fe, Mo) alloy nanoparticles (NPs) were synthesized by a direct replication method using SBA-15 as the hard template, furfuryl alcohol and trimethylbeneze as the primary carbon sources, and metal acetylacetonate as the alloying metal precursor and secondary carbon source. The physicochemical properties of the PtM-OMC catalysts were characterized by N2 adsorption-desorption, X-ray diffraction, transmission electron microscopy, X-ray absorption near edge structure, and extended X-ray absorption fine structure. The alloy PtM NPs have an average size of 2-3 nm and were well dispersed in the pore channels of the OMC support. The second metal (M) in the PtM NPs was mostly in the reduced state, and formed a typical core (Pt)-shell (M) structure. Cyclic voltammetry measurements showed that these PtM-OMC electrodes had excellent electrocatalytic activities and tolerance to CO poisoning during the methanol oxidation reaction, which surpassed those of typical activated carbon-supported PtRu catalysts. In particular, the PtFe-OMC catalyst, which exhibited the best performance, can be a practical anodic electrocatalyst in direct methanol fuel cells due to its superior stability, excellent CO tolerance, and low production cost.
-
-
-
[1]
[1] H. S. Liu, C. J. Song, L. Zhang, J. J. Zhang, H. J. Wang, D. P. Wilkinson, J. Power Sources, 2006, 155, 95.
-
[2]
[2] Y. H. Lee, G. Lee, J. H. Shim, S. Hwang, J. Kwak, K. Lee, H. Song, J. T. Park, Chem. Mater., 2006, 18, 4209.
-
[3]
[3] K. W. Wang, S. Y. Huang, C. T. Yeh, J. Phys. Chem. C, 2007, 111, 5096.
-
[4]
[4] S. Wasmus, A. Küver, J. Electroanal. Chem., 1999, 461, 14.
-
[5]
[5] A. S. Aricò, S. Srinivasan, V. Antonucci, Fuel. Cells, 2001, 1, 133.
-
[6]
[6] N. P. Lebedeva, G. J. M. Janssen, Electrochim. Acta, 2005, 51, 29.
-
[7]
[7] F. B. Su, J. H. Zeng, X. Y. Bao, Y. S. Yu, J. Y. Lee, X. S. Zhao, Chem. Mater., 2005, 17, 3960.
-
[8]
[8] C. Z. Yang, M. Zhou, L. Gao, ACS Appl. Mater. Interfaces, 2014, 6, 18938.
-
[9]
[9] S. H. Liu, R. F. Lu, S. J. Huang, A. Y. Lo, S. H. Chien, S. B. Liu, Chem. Commun., 2006, 3435.
-
[10]
[10] S. H. Liu, W. Y. Yu, C. H. Chen, A. Y. Lo, B. J. Hwang, S. H. Chien, S. B. Liu, Chem. Mater., 2008, 20, 1622.
-
[11]
[11] M. L. Lin, M. Y. Lo, C. Y. Mou, J. Phys. Chem. C, 2009, 113, 16158.
-
[12]
[12] J. H. Zeng, F. B. Su, Y. F. Han, Z. Q. Tian, C. K. Poh, Z. L. Liu, J. Y. Lin, J. Y. Lee, X. S. Zhao, J. Phys. Chem. C, 2008, 112, 15908.
-
[13]
[13] Q. G. He, B. Shyam, M. Nishijima, X. F. Yang, B. Koel, F. Ernst, D. Ramaker, S. Mukerjee, J. Phys. Chem. C, 2013, 117, 1457.
-
[14]
[14] W. M. Chen, G. Q. Sun, Z. X. Liang, Q. Mao, H. Q. Li, G. X. Wang, Q. Xin, H. Chang, C. H. Pak, D. Seung, J. Power Sources, 2006, 160, 933.
-
[15]
[15] P. Piela, C. Eickes, E. Brosha, F. Garzon, P. Zelenay, J. Electrochem. Soc., 2004, 151, A2053.
-
[16]
[16] A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki, J. Power. Sources, 2004, 130, 42.
-
[17]
[17] L. Carrette, K. A. Friedrich, U. Stimming, ChemPhysChem, 2000, 1, 162.
-
[18]
[18] V. Mehta, J. S. Cooper, J. Power Sources, 2003, 114, 32.
-
[19]
[19] H. Chang, S. H. Joo, C. Pak, J. Mater. Chem., 2007, 17, 3078.
-
[20]
[20] Y. Wan, H. F. Yang, D. Y. Zhao, Acc. Chem. Res., 2006, 39, 423.
-
[21]
[21] X. S. Zhao, F. B. Su, Q. F. Yan, W. P. Guo, X. Y. Bao, L. Lv, Z. C. Zhou, J. Mater. Chem., 2006, 16, 637.
-
[22]
[22] A. H. Lu, F. Schüth, Adv. Mater., 2006, 18, 1793.
-
[23]
[23] C. D. Liang, Z. J. Li, S. Dai, Angew. Chem. Int. Ed., 2008, 47, 3696.
-
[24]
[24] T. Y. Ma, L. Liu, Z. Y. Yuan, Chem. Soc. Rev., 2013, 42, 3977.
-
[25]
[25] J. C. Ndamanisha, L. P. Guo, Anal. Chim. Acta, 2012, 747, 19.
-
[26]
[26] P. K. Tripathi, L. Gan, M. Liu, N. N. Rao, J. Nanosci. Nanotechnol., 2014, 14, 1823.
-
[27]
[27] Z. B. Lei, S. Y. Bai, Y. Xiao, L. Q. Dang, L. Z. An, G. N. Zhang, Q. Xu, J. Phys. Chem. C, 2008, 112, 722.
-
[28]
[28] G. S. Chai, I. S. Shin, J. S. Yu, Adv. Mater., 2004, 16, 2057.
-
[29]
[29] J. W. Ren, J. Ding, K. Y. Chan, H. T. Wang, Chem. Mater., 2007, 19, 2786.
-
[30]
[30] G. W. Zhao, J. P. He, C. X. Zhang, J. H. Zhou, X. Chen, T. Wang, J. Phys. Chem. C, 2008, 112, 1028.
-
[31]
[31] S. H. Liu, C. C. Chiang, M. T. Wu, S. B. Liu, Int. J. Hydrogen Energy, 2010, 35, 8149.
-
[32]
[32] S. H. Liu, M. T. Wu, Y. H. Lai, C. C. Chiang, Y. Yu, S. B. Liu, J. Mater. Chem., 2011, 21, 12489.
-
[33]
[33] A. Y. Lo, C. T. Hung, N. Yu, C. T. Kuo, S. B. Liu, Appl. Energy, 2012, 100, 66.
-
[34]
[34] C. Y. Wong, S. K. Chen, A. Y. Lo, C. M. Tseng, C. Y. Lin, S. B. Liu, Int. J. Hydrogen Energy, 2013, 38, 12984.
-
[35]
[35] P. Veerakumar, R. Madhu, S. M. Chen, V. Veeramani, C. T. Hung, P. H. Tang, C. B. Wang, S. B. Liu, J. Mater. Chem. A, 2014, 2, 16015.
-
[36]
[36] P. Veerakumar, R. Madhu, S. M. Chen, C. T. Hung, P. H. Tang, C. B. Wang, S. B. Liu, Analyst, 2014, 139, 4994.
-
[37]
[37] R. Madhu, V. Veeramani, S. M. Chen, P. Veerakumar, S. B. Liu, Chem. Eur. J., 2015, 21, 8200.
-
[38]
[38] R. Bashyam, P. Zelenay, Nature, 2006, 443, 63.
-
[39]
[39] A. Y. Lo, S. H. Liu, S. J. Huang, C. T. Kuo, S. B. Liu, Dimond. Relat. Mater., 2008, 17, 1541.
-
[40]
[40] Z. Chen, D. C. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci., 2011, 4, 3167.
-
[41]
[41] C. T. Hsieh, J. L. Wei, J. Y. Lin, B. H. Yang, Dimond. Relat. Mater., 2011, 20, 1065.
-
[42]
[42] S. H. Liu, F. S. Zheng, J. R. Wu, Appl. Catal. B, 2011, 108-109, 81.
-
[43]
[43] M. Lefèvre, J. P. Dodelet, ECS Trans., 2012, 45, 35.
-
[44]
[44] D. C. Higgins, Z. Chen, Can. J. Chem. Eng., 2013, 91, 1881.
-
[45]
[45] L. Qu, Y. Liu, J. B. Baek, L. Dai, ACS Nano, 2010, 4, 1321.
-
[46]
[46] M. Zhang, L. Dai, Nano Energy, 2012, 1, 514.
-
[47]
[47] X. Y. Sun, R. Wang, D. S. Su, Chin. J. Catal., 2013, 34, 508.
-
[48]
[48] X. J. Zhou, J. L. Qiao, L. Yang, J. J. Zhang, Adv. Energy Mater., 2014, 4, 1301523.
-
[49]
[49] C. T. Hung, N. Y. Yu, C. T. Chen, P. H. Wu, X. X. Han, Y. S. Kao, T. C. Liu, F. Deng, A. M Zheng, S. B. Liu, J. Mater. Chem. A, 2014, 2, 20030.
-
[50]
[50] D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 279, 548.
-
[51]
[51] E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, D. Haskel, Physica B, 1995, 208-209, 117.
-
[52]
[52] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, M. J. Eller, Phys. Rev. B, 1995, 52, 2995.
-
[53]
[53] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
-
[54]
[54] S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, J. Phys. Chem. B, 2002, 106, 4640.
-
[55]
[55] L. Vegard, Z. Phys., 1921, 5, 17.
-
[56]
[56] S. Abe, T. Inoue, K. Watanabe, J. Alloys Compd., 2003, 358, 177.
-
[57]
[57] S. Mahadevan, S. P. Behera, G. Gnanaprakash, T. Jayakumar, J. Philip, B. P. C. Rao, J. Phys. Chem. Solids, 2012, 73, 867.
-
[58]
[58] I. Kazeminezhad, S. Mosivand, Acta Phys. Pol. A, 2014, 125, 1210.
-
[59]
[59] O. Marin-Flores, L. Scudiero, S. Ha, Surf. Sci., 2009, 603, 2327.
-
[60]
[60] L. Kumari, Y. R. Ma, C. C. Tsai, Y. W. Lin, S. Y. Wu, K. W. Cheng, Y. Liou, Nanotechnology, 2007, 18, 115717.
-
[61]
[61] Y. Iwasawa, X-ray Absorption Fine Structure for Catalyst and Surfaces, World Scientific, Singapore, 1996.
-
[62]
[62] B. J. Hwang, L. S. Sarma, J. M. Chen, C. H. Chen, S. C. Shih, G. R. Wang, D. G. Liu, J. F. Lee, M. T. Tang, J. Am. Chem. Soc., 2005, 127, 11140.
-
[63]
[63] B. J. Hwang, C. H. Chen, L. S. Sarma, J. M. Chen, S. C. Shih, G. R. Wang, M. T. Tang, D. G. Liu, J. F. Lee, B. J. Hwang, J. Phys. Chem. B, 2006, 110, 6475.
-
[64]
[64] C. Bock, M. A. Blakely, B. MacDougall, Electrochim. Acta, 2005, 50, 2401.
-
[65]
[65] S. Y. Huang, S. M. Chang, C. T. Yeh, J. Phys. Chem. B, 2006, 110, 234.
-
[66]
[66] Z. L. Liu, X. Y. Ling, B. Guo, L. Hong, J. Y. Lee, J. Power Sources, 2007, 167, 272.
-
[67]
[67] J. Prabhuram, T. S. Zhao, Z. X. Liang, R. Chen, Electrochim. Acta, 2007, 52, 2649.
-
[68]
[68] Z. L. Liu, X. Y. Ling, X. D. Su, J. Y. Lee, J. Phys. Chem. B, 2004, 108, 8234.
-
[69]
[69] T. C. Deivaraj, J. Y. Lee, J. Power Sources, 2005, 142, 43.
-
[70]
[70] W. F. Lin, M. S. Zei, M. Eiswirth, G. Ertl, T. Iwasita, W. Vielstich, J. Phys. Chem. B, 1999, 103, 6968.
-
[71]
[71] T. Frelink, W. Visscher, J. A. R. van Veen, Langmuir, 1996, 12, 3702.
-
[72]
[72] C. Lu, C. Rice, R. I. Masel, P. K. Babu, P. Waszczuk, H. S. Kim, E. Oldfield, A. Wieckowski, J. Phys. Chem. B, 2002, 106, 9581.
-
[73]
[73] P. K. Babu, H. S. Kim, E. Oldfield, A. Wieckowski, J. Phys. Chem. B, 2003, 107, 7595.
-
[1]
-
-
-
[1]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[2]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[3]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[4]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
-
[5]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[6]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[7]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[8]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[9]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[10]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[11]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[12]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[13]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[14]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[15]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[16]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[17]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
-
[18]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[19]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[20]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(503)
- HTML views(79)