Citation:
	            
		            Xianbin  Ma, Yuanyuan  Feng, Yang  Li, Yunshi  Han, Guoping  Lu, Haifang  Yang, Desheng  Kong. Promoting effect of polyaniline on Pd catalysts for the formic acid electrooxidation reaction[J]. Chinese Journal of Catalysis,
							;2015, 36(7): 943-951.
						
							doi:
								10.1016/S1872-2067(15)60863-4
						
					
				
					
				
	        
- 
	                	Pd-based nanomaterials have been considered as an effective catalyst for formic acid electrooxidation reaction (FAOR). Herein, we reported two types of polyaniline (PANI)-promoted Pd catalysts. One was an nPANI/Pd electrocatalyst prepared by the electropolymerization of aniline and the electrodeposition of Pd. The other was a Pd/C/nPANI catalyst prepared by the direct electropolymerization of aniline on a commercial Pd/C catalyst. The results show that PANI alone has no catalytic activity for FAOR; however, PANI can exhibit a significant promoting effect to Pd. The current densities of FAOR on the Pd catalysts with a PANI coating show a significant increase compared with that of the Pd reference catalyst without PANI as a promoter. The promoting effects of PANI are strongly dependent on the electropolymerization potential cycles (n). The highest catalytic activities for FAOR of all the nPANI/Pd and Pd/C/nPANI catalysts were those of 15PANI/Pd and Pd/C/20PANI. The mass-specific activity (MSA) of Pd in 15PANI/Pd was 7.5 times that of the Pd catalyst, and the MSA and intrinsic activity of Pd/C/20PANI were 2.3 and 3.3 times that of the Pd/C catalyst, respectively. The enhanced performance of Pd catalysts is proposed as an electronic effect between Pd nanoparticles and PANI.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
[1] Hoffmann P. Tomorrow's Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet. MIT Press, 2012
 - 
			
                    [2]
                
			
[2] Zhang H W, Shen P K. Chem Rev, 2012, 112: 2780
 - 
			
                    [3]
                
			
[3] Yan Z Y, Li B, Yang D J, Ma J X. Chin J Catal (严泽宇, 李冰, 杨代军, 马建新. 催化学报), 2013, 34: 1471
 - 
			
                    [4]
                
			
[4] Aricò A S, Srinivasan S, Antonucci V. Fuel Cells, 2001, 1: 133
 - 
			
                    [5]
                
			
[5] Song S Q, Tsiakaras P. Appl Catal B, 2006, 63: 187
 - 
			
                    [6]
                
			
[6] Luo Y L, Liang Z X, Liao S J. Chin J Catal (罗远来, 梁振兴, 廖世军. 催化学报), 2010, 31: 141
 - 
			
                    [7]
                
			
[7] Yu X W, Pickup P G. J Power Sources, 2008, 182: 124
 - 
			
                    [8]
                
			
[8] Mazumder V, Chi M F, Mankin M N, Liu Y, Metin Ö, Sun D H, More K L, Sun S H. Nano Lett, 2012, 12: 1102
 - 
			
                    [9]
                
			
[9] Jiang K, Cai W B. Appl Catal B, 2014, 147: 185
 - 
			
                    [10]
                
			
[10] Chen J W, Li Y J, Liu S R, Wang G, Tian J, Jiang C P, Zhu S F, Wang R L. Appl Surf Sci, 2013, 287: 457
 - 
			
                    [11]
                
			
[11] Wang J Y, Kang Y Y, Yang H, Cai W B. J Phys Chem C, 2009, 113: 8366
 - 
			
                    [12]
                
			
[12] Masud J, Alam M T, Miah Md R, Okajima T, Ohsaka T. Electrochem Commun, 2011, 13: 86
 - 
			
                    [13]
                
			
[13] Hu C G, Cao Y X, Yang L, Bai Z Y, Guo Y M, Wang K, Xu P L, Zhou J G. Appl Surf Sci, 2011, 257: 7968
 - 
			
                    [14]
                
			
[14] Sun Z P, Zhang X G, Tong H, Xue R L, Liang Y Y, Li H L. Appl Surf Sci, 2009, 256: 33
 - 
			
                    [15]
                
			
[15] Chen S G, Wei Z D, Qi X Q, Dong L C, Guo Y G, Wan L J, Shao Z G, Li L. J Am Chem Soc, 2012, 134: 13252
 - 
			
                    [16]
                
			
[16] Pandey R K, Lakshminarayanan V. J Phys Chem C, 2009, 113: 21596
 - 
			
                    [17]
                
			
[17] Ding K G, Jia H T, Wei S Y, Guo Z H. Ind Eng Chem Res, 2011, 50: 7077
 - 
			
                    [18]
                
			
[18] Ríos E, Abarca S, Daccarett P, Hguyen Cong N, Martel D, Marco J F, Gancedo J R, Gautier J L. Int J Hydrogen Energy, 2008, 33: 4945
 - 
			
                    [19]
                
			
[19] Dong B, Song D F, Zheng L Q, Xu J K, Li N. J Electroanal Chem, 2009, 633: 63
 - 
			
                    [20]
                
			
[20] Selvaraj V, Alagar M, Hamerton I. Appl Catal B, 2007, 73: 172
 - 
			
                    [21]
                
			
[21] Zhou W Q, Xu J K, Du Y K, Yang P. Int J Hydrogen Energy, 2011, 36: 1903
 - 
			
                    [22]
                
			
[22] Feng Y Y, Yin Q Y, Lu G P, Yang H F, Zhu X, Kong D S, You J M. J Power Sources, 2014, 272: 606
 - 
			
                    [23]
                
			
[23] Feng Y Y, Liu Z H, Xu Y, Wang P, Wang W H, Kong D S. J Power Sources, 2013, 232: 99
 - 
			
                    [24]
                
			
[24] Wang L C, Xu L Q, Sun C, Qian Y T. J Mater Chem, 2009, 19: 1989
 - 
			
                    [25]
                
			
[25] Yaldagard M, Jahanshahi M, Seghatoleslami N. Appl Surf Sci, 2014, 317: 496
 - 
			
                    [26]
                
			
[26] Yang Y, Diao M H, Gao M M, Sun X F, Liu X W, Zhang G H, Qi Z, Wang S G. Electrochim Acta, 2014, 132: 496
 - 
			
                    [27]
                
			
[27] He B L, Tang Q W, Wang M, Chen H Y, Yuan S S. ACS Appl Mater Interface, 2014, 6: 8230
 - 
			
                    [28]
                
			
[28] Niu L, Li Q H, Wei F H, Chen X, Wang H. Synth Met, 2003, 139: 271
 - 
			
                    [29]
                
			
[29] Wang Z, Zhu Z Z, Shi J, Li H L. Appl Surf Sci, 2007, 253: 8811
 - 
			
                    [30]
                
			
[30] Pan W, Zhang X K, Ma H Y, Zhang J T. J Phys Chem C, 2008, 112: 2456
 - 
			
                    [31]
                
			
[31] Birry L, Lasia A. Electrochim Acta, 2006, 51: 3356
 - 
			
                    [32]
                
			
[32] Zhang J T, Huang M H, Ma H Y, Tian F, Pan W, Chen S H. Electrochem Commun, 2007, 9: 1298
 - 
			
                    [33]
                
			
[33] Zhou W J, Lee J Y. J Phys Chem C, 2008, 112: 3789
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
 - 
				[2]
				
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
 - 
				[3]
				
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
 - 
				[4]
				
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
 - 
				[5]
				
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
 - 
				[6]
				
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
 - 
				[7]
				
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
 - 
				[8]
				
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
 - 
				[9]
				
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
 - 
				[10]
				
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
 - 
				[11]
				
Ruizhi Duan , Xiaomei Wang , Panwang Zhou , Yang Liu , Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111
 - 
				[12]
				
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
 - 
				[13]
				
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
 - 
				[14]
				
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
 - 
				[15]
				
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
 - 
				[16]
				
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
 - 
				[17]
				
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
 - 
				[18]
				
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
 - 
				[19]
				
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
 - 
				[20]
				
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(0)
 - Abstract views(1065)
 - HTML views(121)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: