Citation:
Xianbin Ma, Yuanyuan Feng, Yang Li, Yunshi Han, Guoping Lu, Haifang Yang, Desheng Kong. Promoting effect of polyaniline on Pd catalysts for the formic acid electrooxidation reaction[J]. Chinese Journal of Catalysis,
;2015, 36(7): 943-951.
doi:
10.1016/S1872-2067(15)60863-4
-
Pd-based nanomaterials have been considered as an effective catalyst for formic acid electrooxidation reaction (FAOR). Herein, we reported two types of polyaniline (PANI)-promoted Pd catalysts. One was an nPANI/Pd electrocatalyst prepared by the electropolymerization of aniline and the electrodeposition of Pd. The other was a Pd/C/nPANI catalyst prepared by the direct electropolymerization of aniline on a commercial Pd/C catalyst. The results show that PANI alone has no catalytic activity for FAOR; however, PANI can exhibit a significant promoting effect to Pd. The current densities of FAOR on the Pd catalysts with a PANI coating show a significant increase compared with that of the Pd reference catalyst without PANI as a promoter. The promoting effects of PANI are strongly dependent on the electropolymerization potential cycles (n). The highest catalytic activities for FAOR of all the nPANI/Pd and Pd/C/nPANI catalysts were those of 15PANI/Pd and Pd/C/20PANI. The mass-specific activity (MSA) of Pd in 15PANI/Pd was 7.5 times that of the Pd catalyst, and the MSA and intrinsic activity of Pd/C/20PANI were 2.3 and 3.3 times that of the Pd/C catalyst, respectively. The enhanced performance of Pd catalysts is proposed as an electronic effect between Pd nanoparticles and PANI.
-
-
-
[1]
[1] Hoffmann P. Tomorrow's Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet. MIT Press, 2012
-
[2]
[2] Zhang H W, Shen P K. Chem Rev, 2012, 112: 2780
-
[3]
[3] Yan Z Y, Li B, Yang D J, Ma J X. Chin J Catal (严泽宇, 李冰, 杨代军, 马建新. 催化学报), 2013, 34: 1471
-
[4]
[4] Aricò A S, Srinivasan S, Antonucci V. Fuel Cells, 2001, 1: 133
-
[5]
[5] Song S Q, Tsiakaras P. Appl Catal B, 2006, 63: 187
-
[6]
[6] Luo Y L, Liang Z X, Liao S J. Chin J Catal (罗远来, 梁振兴, 廖世军. 催化学报), 2010, 31: 141
-
[7]
[7] Yu X W, Pickup P G. J Power Sources, 2008, 182: 124
-
[8]
[8] Mazumder V, Chi M F, Mankin M N, Liu Y, Metin Ö, Sun D H, More K L, Sun S H. Nano Lett, 2012, 12: 1102
-
[9]
[9] Jiang K, Cai W B. Appl Catal B, 2014, 147: 185
-
[10]
[10] Chen J W, Li Y J, Liu S R, Wang G, Tian J, Jiang C P, Zhu S F, Wang R L. Appl Surf Sci, 2013, 287: 457
-
[11]
[11] Wang J Y, Kang Y Y, Yang H, Cai W B. J Phys Chem C, 2009, 113: 8366
-
[12]
[12] Masud J, Alam M T, Miah Md R, Okajima T, Ohsaka T. Electrochem Commun, 2011, 13: 86
-
[13]
[13] Hu C G, Cao Y X, Yang L, Bai Z Y, Guo Y M, Wang K, Xu P L, Zhou J G. Appl Surf Sci, 2011, 257: 7968
-
[14]
[14] Sun Z P, Zhang X G, Tong H, Xue R L, Liang Y Y, Li H L. Appl Surf Sci, 2009, 256: 33
-
[15]
[15] Chen S G, Wei Z D, Qi X Q, Dong L C, Guo Y G, Wan L J, Shao Z G, Li L. J Am Chem Soc, 2012, 134: 13252
-
[16]
[16] Pandey R K, Lakshminarayanan V. J Phys Chem C, 2009, 113: 21596
-
[17]
[17] Ding K G, Jia H T, Wei S Y, Guo Z H. Ind Eng Chem Res, 2011, 50: 7077
-
[18]
[18] Ríos E, Abarca S, Daccarett P, Hguyen Cong N, Martel D, Marco J F, Gancedo J R, Gautier J L. Int J Hydrogen Energy, 2008, 33: 4945
-
[19]
[19] Dong B, Song D F, Zheng L Q, Xu J K, Li N. J Electroanal Chem, 2009, 633: 63
-
[20]
[20] Selvaraj V, Alagar M, Hamerton I. Appl Catal B, 2007, 73: 172
-
[21]
[21] Zhou W Q, Xu J K, Du Y K, Yang P. Int J Hydrogen Energy, 2011, 36: 1903
-
[22]
[22] Feng Y Y, Yin Q Y, Lu G P, Yang H F, Zhu X, Kong D S, You J M. J Power Sources, 2014, 272: 606
-
[23]
[23] Feng Y Y, Liu Z H, Xu Y, Wang P, Wang W H, Kong D S. J Power Sources, 2013, 232: 99
-
[24]
[24] Wang L C, Xu L Q, Sun C, Qian Y T. J Mater Chem, 2009, 19: 1989
-
[25]
[25] Yaldagard M, Jahanshahi M, Seghatoleslami N. Appl Surf Sci, 2014, 317: 496
-
[26]
[26] Yang Y, Diao M H, Gao M M, Sun X F, Liu X W, Zhang G H, Qi Z, Wang S G. Electrochim Acta, 2014, 132: 496
-
[27]
[27] He B L, Tang Q W, Wang M, Chen H Y, Yuan S S. ACS Appl Mater Interface, 2014, 6: 8230
-
[28]
[28] Niu L, Li Q H, Wei F H, Chen X, Wang H. Synth Met, 2003, 139: 271
-
[29]
[29] Wang Z, Zhu Z Z, Shi J, Li H L. Appl Surf Sci, 2007, 253: 8811
-
[30]
[30] Pan W, Zhang X K, Ma H Y, Zhang J T. J Phys Chem C, 2008, 112: 2456
-
[31]
[31] Birry L, Lasia A. Electrochim Acta, 2006, 51: 3356
-
[32]
[32] Zhang J T, Huang M H, Ma H Y, Tian F, Pan W, Chen S H. Electrochem Commun, 2007, 9: 1298
-
[33]
[33] Zhou W J, Lee J Y. J Phys Chem C, 2008, 112: 3789
-
[1]
-
-
-
[1]
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
-
[2]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[3]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[4]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[5]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[6]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[7]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[8]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[9]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[10]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[11]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[12]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[13]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[14]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[15]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[16]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[17]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[18]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[19]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[20]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(853)
- HTML views(104)