Citation:
Sneha Yadav, Jitender M. Khurana. Cinnamomum tamala leaf extract-mediated green synthesis of Ag nanoparticles and their use in pyranopyrazles synthesis[J]. Chinese Journal of Catalysis,
;2015, 36(7): 1042-1046.
doi:
10.1016/S1872-2067(15)60853-1
-
A novel, biochemical, and eco-friendly method has been developed for the synthesis of Ag nanoparticles using an aqueous leaf extract of readily accessible Cinnamomum tamala as reducing and stabilizing agents. These Ag nanoparticles were used to catalyze the synthesis of pyranopyrazoles. The green nature and ease of recovery and reusability of the catalyst, together with high yields of products, make this protocol attractive and useful.
-
Keywords:
- Silver nanoparticle,
- Cinnamomum tamala leaf,
- Catalysis,
- Pyranopyrazole
-
-
-
[1]
[1] Okuda M, Kobayashi Y, Suzuki K, Sonoda K, Kondoh T, Wagawa A, Kondo A, Yoshimura H. Nano Lett, 2005, 5:991
-
[2]
[2] Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P. Nano Lett, 2003 3: 1229
-
[3]
[3] Shipway A N, Katz E, Willner I. ChemPhysChem, 2000, 1: 18
-
[4]
[4] Feng Q L, Wu J, Chen G Q, Kim T N, Kim J O. J Biomed Mater Res, 2000, 52: 662
-
[5]
[5] Liau S Y, Read D C, Pugh W J, Furr J R, Russell A D. Lett Appl Microbiol, 1997, 25: 279
-
[6]
[6] Wong K K Y, Cheung S O F, Huang L M, Niu J, Tao C, Ho C M, Che C M, Tam P K. ChemMedChem, 2009, 4: 1129
-
[7]
[7] Leopold N, Lendl B. J Phys Chem B, 2003, 107: 5723
-
[8]
[8] Zhang Y H, Chen F, Zhuang J H, Tang Y, Wang D J, Wang Y J, Dong A G, Ren N. Chem Commun, 2002: 2814
-
[9]
[9] Zhang J P, Sheng L Q, Chen P. Chin Chem Lett, 2003, 14: 645
-
[10]
[10] Shchukin D G, Radtchenko I L, Sukhorukov G B. ChemPhysChem, 2003, 4: 1101
-
[11]
[11] He B L, Tan J J, Liew K Y, Liu H F. J Mol Catal A, 2004, 221: 121
-
[12]
[12] McLeod M C, McHenry R S, Beckman E J, Roberts C B. J Phys Chem B, 2003, 107: 2693
-
[13]
[13] Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni S K, Paknikar K M. Nanotechnology, 2003, 14: 95
-
[14]
[14] Li S K, Shen Y H, Xie A J, Yu X R, Qiu L G, Zhang L, Zhang Q F. Green Chem, 2007, 9: 852
-
[15]
[15] Chandran S P, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Biotechnol Progr, 2006 22: 577
-
[16]
[16] Huang J L, Li Q B, Sun D H, Lu Y H, Su Y B, Yang X, Wang H X, Wang Y P, Shao W Y, He N, Hong J Q, Chen C X. Nanotechnology, 2007, 18: 105104
-
[17]
[17] Krishnaraj C, Jagan E G, Rajasekar S, Selvakumar P, Kalaichelvan P T, Mohan N. Colloids Surf B, 2010, 76: 50
-
[18]
[18] Ankamwar B, Damle C, Ahmad A, Sastry M. J Nanosci Nanotechnol, 2005, 10: 1665
-
[19]
[19] Bar H, Bhui D K, Sahoo G P, Sarkar P, De S P, Misra A. Colloids Surf A, 2009, 339: 134
-
[20]
[20] Bankar A, Joshi B, Kumar A R, Zinjarde S. Colloids Surf A, 2010, 368: 58
-
[21]
[21] Ahmad N, Sharma S, Alam M K, Singh V N, Shamsi S F, Mehta B R, Fatma A. Colloids Surf B, 2010, 81: 81
-
[22]
[22] Sanpui P, Murugadoss A, Prasad P V D, Ghosh S S, Chattopadhyay A. Int J Food Microbiol, 2008, 124: 142
-
[23]
[23] Murugadoss A, Chattopadhyay A. J Phys Chem C, 2008, 112: 11265
-
[24]
[24] Yan W J, Wang R, Xu Z Q, Xu J K, Lin L, Shen Z Q, Zhou Y F. J Mol Catal A, 2006, 255: 81
-
[25]
[25] Yong G P, Tian D, Tong H W, Liu S M. J Mol Catal A, 2010, 323: 40
-
[26]
[26] Bhatte K D, Tambade P J, Dhake K P, Bhanage B M. Catal Commun, 2010, 11: 1233
-
[27]
[27] Cong H. Becker C F, Elliott S J, Grinstaff M W, Porco J A. J Am Chem Soc, 2010, 132: 7514
-
[28]
[28] Chen Y Y, Wang C, Liu H Y, Qiu J S, Bao X H. Chem Commun, 2005: 5298
-
[29]
[29] Rema J, Leela N K, Krishnamoorthy B, Mathew P A. J Med Aromat Plant Sci, 2005, 27: 515
-
[30]
[30] Singh A K, Talat M, Singh D P, Srivastava O N. J Nanopart Res, 2010, 12: 1667
-
[31]
[31] Khalil M M H, Ismail E H, El-Baghdady K Z, Mohamed D. Arab J Chem, 2014, 7: 1131
-
[32]
[32] Karuppiah M, Rajmohan R. Mater Lett, 2013, 97: 141
-
[33]
[33] Philip D, Unni C. Phys E, 2011, 43: 1318
-
[34]
[34] Kalimuthu K, Babu R S, Venkataraman D, Bilal M, Gurunathan S. Colloids Surf B, 2008, 65: 150
-
[35]
[35] Vijayaraghavan K, Nalini S P, Prakash N U, Madhankumar D. Mater Lett, 2012, 75: 33
-
[36]
[36] Swaroop T R, Sharath Kumar K S, Palanivelu M, Chaitanya S, Rangappa K S. J Heterocycl Chem, 2014, 51: 1866
-
[37]
[37] Wu M S, Feng Q Q, Wan D H, Ma J Y. Synth Commun, 2013, 43: 1721
-
[38]
[38] Vasuki G, Kumaravel K. Tetrahedron Lett, 2008, 49: 5636
-
[39]
[39] Kanagaraj K, Pitchumani K. Tetrahedron Lett, 2010, 51: 3312
-
[1]
-
-
-
[1]
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
-
[2]
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
-
[3]
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
-
[4]
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
-
[5]
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
-
[6]
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
-
[7]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[8]
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
-
[9]
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
-
[10]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[11]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[12]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[13]
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
-
[14]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[15]
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
-
[16]
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
-
[17]
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
-
[18]
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
-
[19]
Liliang Chu , Xiaoyan Zhang , Jianing Li , Xuelei Deng , Miao Wu , Ya Cheng , Weiping Zhu , Xuhong Qian , Yunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896
-
[20]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(242)
- HTML views(2)