Citation: Tao Chang, Leqin He, Xiaojing Zhang, Mingxia Yuan, Shenjun Qin, Jiquan Zhao. Brönsted acid surfactant-combined dicationic ionic liquids as green catalysts for biodiesel synthesis from free fatty acids and alcohols[J]. Chinese Journal of Catalysis, ;2015, 36(7): 982-986. doi: 10.1016/S1872-2067(15)60852-X shu

Brönsted acid surfactant-combined dicationic ionic liquids as green catalysts for biodiesel synthesis from free fatty acids and alcohols

  • Corresponding author: Shenjun Qin,  Jiquan Zhao, 
  • Received Date: 29 January 2015
    Available Online: 27 March 2015

    Fund Project: 河北省自然科学基金(B2012402001, D2014402046) (B2012402001, D2014402046) 河北省高校百名优秀创新人才支持计划(BR2-204) (BR2-204) 河北省高校科学技术基金(Q2012030). (Q2012030)

  • Quaternary ammonium Brönsted acid surfactant-combined dicationic ionic liquids (BASDILs) based on zwitterionic 1,2-bis[N-methyl-N-(3-sulfopropyl)-alkylammonium]ethane betaines and various anions were prepared and characterized. BASDILs possess properties similar to those of phase-separated catalysts and were applied to the catalytic synthesis of biodiesel from free fatty acids and alcohols. Several factors were investigated and the results indicated that [C12Sb][p-CH3C6H4SO3] was the optimal catalyst, with good catalytic performance and reusability under mild conditions.
  • 加载中
    1. [1]

      [1] Singh S P, Singh D. Renew Sustain Energy Rev, 2010, 14: 200

    2. [2]

      [2] Lozano P, Bernal J M, Sánchez-Gómez G, López-López G, Vaultier M. Energy Environ Sci, 2013, 6: 1328

    3. [3]

      [3] Lee A F, Wilson K. Catal Today, 2015, 242: 3

    4. [4]

      [4] Qin S J, Sun Y Z, Shi C L, He L Q, Meng Y, Ren X H. Energies, 2012, 5: 2759

    5. [5]

      [5] Duan X X, Sun G R, Sun Z, Li J X, Wang S T, Wang X H, Li S W, Jiang Z J. Catal Commun, 2013, 42: 125

    6. [6]

      [6] Wang L T, Dong X Q, Jiang H X, Li G M, Zhang M H. Catal Commun, 2014, 56:164

    7. [7]

      [7] Li Y, Hu S L, Cheng J H, Lou W Y. Chin J Catal (李颖, 胡双岚, 程建华, 娄文勇. 催化学报), 2014, 35: 396

    8. [8]

      [8] Chai M, Tu Q S, Lu M M, Yang Y J. Fuel Process Technol, 2014, 125: 106

    9. [9]

      [9] Zhang X H, Su F, Song D Y, An S, Lu B, Guo Y H. Appl Catal B, 2015, 163: 50

    10. [10]

      [10] Lotero E, Liu Y J, Lopez D E, Suwannakarn K, Bruce D A, Goodwin J G, Jr. Ind Eng Chem Res, 2005, 44: 5353

    11. [11]

      [11] Sani Y M, Daud W M A W, Aziz A R A. Appl Catal A, 2014, 470: 140

    12. [12]

      [12] Zhang L, Xian M, He Y C, Li L Z, Yang J M, Yu S T, Xu X. Bioresour Technol, 2009, 100: 4368

    13. [13]

      [13] Fauzi A H M, Amin N A S. Energy Convers Manage, 2013, 76: 818

    14. [14]

      [14] Fauzi A H M, Amin N A S, Mat R. Appl Energy, 2014, 114: 809

    15. [15]

      [15] Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, James H D Jr. J Am Chem Soc, 2002, 124: 5962

    16. [16]

      [16] Wu Q, Wan H L, Li H S, Song H R, Chu T H. Catal Today, 2013, 200: 74

    17. [17]

      [17] Wu Z W, Li Z, Wu G M, Wang L L, Lu S Q, Wang L, Wan H, Guan G F. Ind Eng Chem Res, 2014, 53: 3040

    18. [18]

      [18] He L Q, Qin S J, Chang T, Sun Y Z, Gao X R. Catal Sci Technol, 2013, 3: 1102

    19. [19]

      [19] Liang X Z. Appl Catal A, 2013, 455: 206

    20. [20]

      [20] Aghabarari B, Dorostkar N, Martinez-Huerta M V. Fuel Process Technol, 2014, 118: 296

    21. [21]

      [21] Anderson J L, Ding R, Ellern A, Armstrong D W. J Am Chem Soc, 2005, 127: 593

    22. [22]

      [22] Fang D, Yang J M, Jiao C M. ACS Catal, 2011, 1: 42

    23. [23]

      [23] Fan M M, Yang J, Jiang P P, Zhang P B, Li S S. RSC Adv, 2013, 3: 752

    24. [24]

      [24] Aghabarari B, Dorostkar N, Ghiaci M, Amini S G, Rahimi E, Martinez-Huerta M V. J Taiwan Inst Chem Eng, 2014, 45: 431

    25. [25]

      [25] Aghabarari B, Dorostkar N. J Taiwan Inst Chem Eng, 2014, 45: 1468

    26. [26]

      [26] He L Q, Qin S J, Chang T, Sun Y Z, Zhao J Q. Int J Mol Sci, 2014, 15: 8656

    27. [27]

      [27] Chang T, He L Q, Bian L, Han H Y, Yuan M X, Gao X R. RSC Adv, 2014, 4: 727

    28. [28]

      [28] Chang T, Gao X R, Bian L, Fu X Y, Yuan M X, Jing H W. Chin J Catal (常涛, 高晓蕊, 边丽, 付西英, 袁明霞, 景欢旺. 催化学报), 2015, 36: 408

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    6. [6]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    13. [13]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    16. [16]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(0)
  • Abstract views(282)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return