Citation: Qianli Zhang, Xinyan Guo, Xiaodan Cao, Dongtian Wang, Jie Wei. Facile preparation of a Ti/α-PbO2/β-PbO2 electrode for theelectrochemical degradation of 2-chlorophenol[J]. Chinese Journal of Catalysis, ;2015, 36(7): 975-981. doi: 10.1016/S1872-2067(15)60851-8 shu

Facile preparation of a Ti/α-PbO2/β-PbO2 electrode for theelectrochemical degradation of 2-chlorophenol

  • Corresponding author: Jie Wei, 
  • Received Date: 8 January 2015
    Available Online: 27 March 2015

    Fund Project: 国家自然科学基金(251178283, 20905055) (251178283, 20905055) 江苏省研究生创新工程(SJLX_0580). (SJLX_0580)

  • A Ti/α-PbO2/β-PbO2 electrode with high stability was prepared and examined toward the electrochemical degradation of 2-chlorophenol. Scanning electron microscopy analysis revealed that Ti/α-PbO2/β-PbO2 had a cauliflower morphology comprising small β-PbO2 crystals. The 2-chlorophenol removal rate using the Ti/α-PbO2/β-PbO2 electrode was 100% after 180 min of electrolysis under optimal conditions, which were selected based on the orthogonal test method, i.e., initial concentration of 2-cholorophenol = 50 mg/L, concentration of Na2SO4 = 0.1 mol/L, temperature = 35 ℃, and anode current density = 20 mA/cm2. Kinetic analyses demonstrated that the electrochemical oxidation of 2-chlorophenol on the Ti/α-PbO2/β-PbO2 electrode followed pseudo-first order kinetics.
  • 加载中
    1. [1]

      [1] Wei M C, Tian D, Liu S, Zheng X L, Duan S, Zhou C L. Sensor Actuat B, 2014, 195: 452

    2. [2]

      [2] Teng W, Li X Y, Zhao Q D, Chen G H. J Mater Chem A, 2013, 1: 9060

    3. [3]

      [3] He Z Q, Wang C, Wang H Y, Hong F Y, Xu X H, Chen J M, Song S. J Hazard Mater, 2011, 189: 595

    4. [4]

      [4] Mayani S V, Mayani V J, Kim S W. Can J Chem Eng, 2013, 91: 1270

    5. [5]

      [5] Ortiz de la Plata G B, Alfano O M, Cassano A E. Appl Catal B, 2010, 95: 1

    6. [6]

      [6] Gong J J, Li D P, Huang J, Ding L Y, Tong Y L, Li K, Zhang C. Catal Lett, 2013, 144: 487

    7. [7]

      [7] Khanikar N, Bhattacharyya K G. Chem Eng J, 2013, 233: 88

    8. [8]

      [8] Yoon J H, Shim Y B, Lee B S, Choi S Y, Won M S. Bull Korean Chem Soc, 2012, 33: 2274

    9. [9]

      [9] Vallejo M, San Román M F, Ortiz I. Environ Sci Technol, 2013, 47: 12400

    10. [10]

      [10] Zheng Y H, Su W Q, Chen S Y, Wu X Z, Chen X M. Chem Eng J, 2011, 174: 304

    11. [11]

      [11] Martinez-Huitle C A, Ferro S. Chem Soc Rev, 2006, 35: 1324

    12. [12]

      [12] Zhao J, Zhu C Z, Lu J, Hu C J, Peng S C, Chen T H. Electrochim Acta, 2014, 118: 169

    13. [13]

      [13] Lin H, Niu J F, Xu J L, Li Y, Pan Y H. Electrochim Acta, 2013, 97: 167

    14. [14]

      [14] Song S, Zhan L Y, He Z Q, Lin L L, Tu J J, Zhang Z H, Chen J M, Xu L J. J Hazard Mater, 2010, 175: 614

    15. [15]

      [15] Weiss E, Groenen-Serrano K, Savall A. J Appl Electrochem, 2008, 38: 329

    16. [16]

      [16] Awad H S, Galwa N A. Chemosphere, 2005, 61: 1327

    17. [17]

      [17] Wang Y, Shen Z Y, Li Y, Niu J F. Chemosphere, 2010, 79: 987

    18. [18]

      [18] Vazquez-Gomez L, de Battisti A, Ferro S, Cerro M, Reyna S, Martínez-Huitle C A, Quiroz M A. Clean Soil, Air, Water, 2012, 40: 408

    19. [19]

      [19] Yahiaoui I, Aissani-Benissad F, Fourcade F, Amrane A. Environ Prog Sustain Energy, 2012, 31: 515

    20. [20]

      [20] Lin H, Niu J F, Ding S Y, Zhang L L. Water Res, 2012, 46: 2281

    21. [21]

      [21] Lin H, Niu J F, Xu J L, Huang H, Li D, Yue Z H, Feng C H. Environ Sci Technol, 2013, 47: 13039

    22. [22]

      [22] Niu J F, Lin H, Xu J L, Wu H, Li Y Y. Environ Sci Technol, 2012, 46: 10191

    23. [23]

      [23] Chen Z, Yu Q, Liao D H, Guo Z C, Wu J. Trans Nonferrous Met Soc China, 2013, 23: 1382

    24. [24]

      [24] Abaci S, Tamer U, Pekmez K, Yildiz A. Electrochim Acta, 2005, 50: 3655

    25. [25]

      [25] Aquino J M, Rocha-Filho R C, Ruotolo L A M, Bocchi N, Biaggio S R. Chem Eng J, 2014, 251: 138

    26. [26]

      [26] Aquino J M, Pereira G F, Rocha-Filho R C, Bocchi N, Biaggio S R. J Hazard Mater, 2011, 192: 1275

    27. [27]

      [27] Souza F L, Aquino J M, Irikura K, Miwa D W, Rodrigo M A, Motheo A J. Chemosphere, 2014, 109: 187

    28. [28]

      [28] Li G T, Qu J H, Zhang X W, Ge J T. Water Res, 2006, 40: 213

    29. [29]

      [29] Duan X Y, Ma F, Yuan Z X, Chang L M, Jin X T. J Taiwan Inst Chem Eng, 2013, 44: 95

    30. [30]

      [30] Li G T, Yip H Y, Wong K H, Hu C, Qu J H, Wong P K. J Environ Sci, 2011, 23: 998

    31. [31]

      [31] Mohd Y. J Sci Technol, 2011, 3: 109

    32. [32]

      [32] Wei L, Mao X H, Lin A, Gan F X. Russ J Electrochem, 2011, 47: 1394

    33. [33]

      [33] Li H Y, Chen Y, Zhang Y H, Han W Q, Sun X Y, Li J S, Wang L J. J Electroanal Chem, 2013, 689: 193

    34. [34]

      [34] Chen Y, Li H Y, Liu W J, Tu Y, Zhang Y H, Han W Q, Wang L J. Chemosphere, 2014, 113: 48

    35. [35]

      [35] Da Silva L M, De Faria L A, Boodts J F C. Electrochim Acta, 2003, 48: 699

    36. [36]

      [36] Wang Z Y, Qi J Y, Feng Y, Li K, Li X. J Ind Eng Chem, 2014, 20: 3672

    37. [37]

      [37] Wang H, Wang J L. Appl Catal B, 2009, 89: 111

    38. [38]

      [38] Cong Y Q, Wu Z C, Ye Q, Tan T E. J Zhejiang Univ Sci, 2004, 5: 180

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    3. [3]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    17. [17]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(0)
  • Abstract views(240)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return