Citation:
Qianli Zhang, Xinyan Guo, Xiaodan Cao, Dongtian Wang, Jie Wei. Facile preparation of a Ti/α-PbO2/β-PbO2 electrode for theelectrochemical degradation of 2-chlorophenol[J]. Chinese Journal of Catalysis,
;2015, 36(7): 975-981.
doi:
10.1016/S1872-2067(15)60851-8
-
A Ti/α-PbO2/β-PbO2 electrode with high stability was prepared and examined toward the electrochemical degradation of 2-chlorophenol. Scanning electron microscopy analysis revealed that Ti/α-PbO2/β-PbO2 had a cauliflower morphology comprising small β-PbO2 crystals. The 2-chlorophenol removal rate using the Ti/α-PbO2/β-PbO2 electrode was 100% after 180 min of electrolysis under optimal conditions, which were selected based on the orthogonal test method, i.e., initial concentration of 2-cholorophenol = 50 mg/L, concentration of Na2SO4 = 0.1 mol/L, temperature = 35 ℃, and anode current density = 20 mA/cm2. Kinetic analyses demonstrated that the electrochemical oxidation of 2-chlorophenol on the Ti/α-PbO2/β-PbO2 electrode followed pseudo-first order kinetics.
-
-
-
[1]
[1] Wei M C, Tian D, Liu S, Zheng X L, Duan S, Zhou C L. Sensor Actuat B, 2014, 195: 452
-
[2]
[2] Teng W, Li X Y, Zhao Q D, Chen G H. J Mater Chem A, 2013, 1: 9060
-
[3]
[3] He Z Q, Wang C, Wang H Y, Hong F Y, Xu X H, Chen J M, Song S. J Hazard Mater, 2011, 189: 595
-
[4]
[4] Mayani S V, Mayani V J, Kim S W. Can J Chem Eng, 2013, 91: 1270
-
[5]
[5] Ortiz de la Plata G B, Alfano O M, Cassano A E. Appl Catal B, 2010, 95: 1
-
[6]
[6] Gong J J, Li D P, Huang J, Ding L Y, Tong Y L, Li K, Zhang C. Catal Lett, 2013, 144: 487
-
[7]
[7] Khanikar N, Bhattacharyya K G. Chem Eng J, 2013, 233: 88
-
[8]
[8] Yoon J H, Shim Y B, Lee B S, Choi S Y, Won M S. Bull Korean Chem Soc, 2012, 33: 2274
-
[9]
[9] Vallejo M, San Román M F, Ortiz I. Environ Sci Technol, 2013, 47: 12400
-
[10]
[10] Zheng Y H, Su W Q, Chen S Y, Wu X Z, Chen X M. Chem Eng J, 2011, 174: 304
-
[11]
[11] Martinez-Huitle C A, Ferro S. Chem Soc Rev, 2006, 35: 1324
-
[12]
[12] Zhao J, Zhu C Z, Lu J, Hu C J, Peng S C, Chen T H. Electrochim Acta, 2014, 118: 169
-
[13]
[13] Lin H, Niu J F, Xu J L, Li Y, Pan Y H. Electrochim Acta, 2013, 97: 167
-
[14]
[14] Song S, Zhan L Y, He Z Q, Lin L L, Tu J J, Zhang Z H, Chen J M, Xu L J. J Hazard Mater, 2010, 175: 614
-
[15]
[15] Weiss E, Groenen-Serrano K, Savall A. J Appl Electrochem, 2008, 38: 329
-
[16]
[16] Awad H S, Galwa N A. Chemosphere, 2005, 61: 1327
-
[17]
[17] Wang Y, Shen Z Y, Li Y, Niu J F. Chemosphere, 2010, 79: 987
-
[18]
[18] Vazquez-Gomez L, de Battisti A, Ferro S, Cerro M, Reyna S, Martínez-Huitle C A, Quiroz M A. Clean Soil, Air, Water, 2012, 40: 408
-
[19]
[19] Yahiaoui I, Aissani-Benissad F, Fourcade F, Amrane A. Environ Prog Sustain Energy, 2012, 31: 515
-
[20]
[20] Lin H, Niu J F, Ding S Y, Zhang L L. Water Res, 2012, 46: 2281
-
[21]
[21] Lin H, Niu J F, Xu J L, Huang H, Li D, Yue Z H, Feng C H. Environ Sci Technol, 2013, 47: 13039
-
[22]
[22] Niu J F, Lin H, Xu J L, Wu H, Li Y Y. Environ Sci Technol, 2012, 46: 10191
-
[23]
[23] Chen Z, Yu Q, Liao D H, Guo Z C, Wu J. Trans Nonferrous Met Soc China, 2013, 23: 1382
-
[24]
[24] Abaci S, Tamer U, Pekmez K, Yildiz A. Electrochim Acta, 2005, 50: 3655
-
[25]
[25] Aquino J M, Rocha-Filho R C, Ruotolo L A M, Bocchi N, Biaggio S R. Chem Eng J, 2014, 251: 138
-
[26]
[26] Aquino J M, Pereira G F, Rocha-Filho R C, Bocchi N, Biaggio S R. J Hazard Mater, 2011, 192: 1275
-
[27]
[27] Souza F L, Aquino J M, Irikura K, Miwa D W, Rodrigo M A, Motheo A J. Chemosphere, 2014, 109: 187
-
[28]
[28] Li G T, Qu J H, Zhang X W, Ge J T. Water Res, 2006, 40: 213
-
[29]
[29] Duan X Y, Ma F, Yuan Z X, Chang L M, Jin X T. J Taiwan Inst Chem Eng, 2013, 44: 95
-
[30]
[30] Li G T, Yip H Y, Wong K H, Hu C, Qu J H, Wong P K. J Environ Sci, 2011, 23: 998
-
[31]
[31] Mohd Y. J Sci Technol, 2011, 3: 109
-
[32]
[32] Wei L, Mao X H, Lin A, Gan F X. Russ J Electrochem, 2011, 47: 1394
-
[33]
[33] Li H Y, Chen Y, Zhang Y H, Han W Q, Sun X Y, Li J S, Wang L J. J Electroanal Chem, 2013, 689: 193
-
[34]
[34] Chen Y, Li H Y, Liu W J, Tu Y, Zhang Y H, Han W Q, Wang L J. Chemosphere, 2014, 113: 48
-
[35]
[35] Da Silva L M, De Faria L A, Boodts J F C. Electrochim Acta, 2003, 48: 699
-
[36]
[36] Wang Z Y, Qi J Y, Feng Y, Li K, Li X. J Ind Eng Chem, 2014, 20: 3672
-
[37]
[37] Wang H, Wang J L. Appl Catal B, 2009, 89: 111
-
[38]
[38] Cong Y Q, Wu Z C, Ye Q, Tan T E. J Zhejiang Univ Sci, 2004, 5: 180
-
[1]
-
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
Xubin Qian , Lei Xu , Xu Ge , Zhun Liu , Cheng Fang , Jianbing Wang , Junfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218
-
[3]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[4]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[5]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[6]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[7]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[8]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[9]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[10]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[11]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[12]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[13]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[14]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[15]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[16]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[17]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[18]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[19]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[20]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(240)
- HTML views(2)