Citation:
Afşin Y. Çetinkaya, Emre Oğuz Köroğlu, Neslihan Manav Demir, Derya Yılmaz Baysoy, Bestamin Özkaya, Mehmet Çakmakçı. Electricity production by a microbial fuel cell fueled by brewery wastewater and the factors in its membrane deterioration[J]. Chinese Journal of Catalysis,
;2015, 36(7): 1068-1076.
doi:
10.1016/S1872-2067(15)60833-6
-
Electricity production from brewery wastewater using dual-chamber microbial fuel cells (MFCs) with a tin-coated copper mesh in the anode was investigated by changing the hydraulic retention time (HRT). The MFCs were fed with wastewater samples from the inlet (inflow, MFC-1) and outlet (outflow, MFC-2) of an anaerobic digester of a brewery wastewater treatment plant. Both chemical oxygen demand removal and current density were improved by decreasing HRT. The best MFC performance was with an HRT of 0.5 d. The maximum power densities of 8.001 and 1.843 µW/cm2 were obtained from reactors MFC-1 and MFC-2, respectively. Microbial diversity at different conditions was studied using PCR-DGGE profiling of 16S rRNA fragments of the microorganisms from the biofilm on the anode electrode. The MFC reactor had mainly Geobacter, Shewanella, and Clostridium species, and some bacteria were easily washed out at lower HRTs. The fouling characteristics of the MFC Nafion membrane and the resulting degradation of MFC performance were examined. The ion exchange capacity, conductivity, and diffusivity of the membrane decreased significantly after fouling. The morphology of the Nafion membrane and MFC degradation were studied using scanning electron microscopy and attenuated total reflection-Fourier transform infrared spectroscopy.
-
-
-
[1]
[1] Ozkaya B, Akoglu B, Karadag D, Aci G, Taskan E, Hasar E. Bioprocess Biosyst Eng, 2012, 35: 1219
-
[2]
[2] Fernando E, Keshavarz T, Kyazze G. Bioresour Technol, 2013, 127: 1
-
[3]
[3] Lin C W, Wu C H, Huang W T, Tsai S L. Fuel, 2015, 144: 1
-
[4]
[4] Yang G X, Sun Y M, Yuan Z H, Lü P M, Kong X Y, Li L H, Chen G Y, Lu T H. Chin J Catal (杨改秀, 孙永明, 袁振宏, 吕鹏梅, 孔晓英, 李连华, 陈冠益, 陆天虹. 催化学报), 2014, 35: 770
-
[5]
[5] Kiely P D, Rader G, Regan J M, Logan B E. Bioresour Technol, 2011, 102: 361
-
[6]
[6] He Z, Wagner N, Minteer S D, Angenent L T. Environ Sci Technol, 2006, 40: 5212
-
[7]
[7] Koroglu E O, Yilmaz Baysoy D, Cetinkaya A Y, Ozkaya B, Çakmakci M. Biomass Bioenergy, 2014, 69: 58
-
[8]
[8] Wen Q, Wu Y, Zhao L X, Sun Q. Fuel, 2010, 89: 1381
-
[9]
[9] Venkata Mohan S, Mohanakrishna G, Velvizhi G, Babu V L, Sarma P N. Biochem Eng J, 2010, 51: 32
-
[10]
[10] Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I. Environ Sci Technol, 2006, 40: 5193
-
[11]
[11] Kim H J, Park H S, Hyun M S, Chang I S, Kim M, Kim B H. Enzyme Microb Technol, 2002, 30: 145
-
[12]
[12] Koroglu E O, Ozkaya B, Cetinkaya A Y. Int J Energy Sci, 2014, 4: 28
-
[13]
[13] Koroglu E O, Ozkaya B, Denktas C, Cakmakci M. J Biosci Bioeng, 2014, 118: 672
-
[14]
[14] Ghasemi M, Daud W R W, Ismail M, Rahimnejad M, Ismail A F, Leong J X, Miskan M, Ben Liew K. Int J Hydrog Energy, 2013, 38: 5480
-
[15]
[15] Cheng K, He D P, Peng T, Lv H F, Pan M, Mu S C. Electrochim Acta, 2014, 132: 356
-
[16]
[16] Choi T H, Won Y B, Lee J W, Shin D W, Lee Y M, Kim M, Park H B. J Power Sources, 2012, 220: 269
-
[17]
[17] Koskinen P E P, Lay C H, Puhakka J A, Lin P J, Wu S Y, Örlygsson J, Lin C Y. Biotechnol Bioeng, 2008, 101: 665
-
[18]
[18] Koskinen P E P, Kaksonen A H, Puhakka J A. Biotechnol Bioeng, 2007, 97: 742
-
[19]
[19] Behera M, Ghangrekar M M. Bioresour Technol, 2009, 100: 5114
-
[20]
[20] Yates M D, Kiely P D, Call D F, Rismani-Yazdi H, Bibby K, Peccia J, Regan J M, Logan B E. ISME J, 2012, 6: 2002
-
[21]
[21] Jadhav G S, Ghangrekar M M. Bioresour Technol, 2009, 100: 717
-
[22]
[22] Yu J, Park Y, Kim B, Lee T. Bioprocess Biosyst Eng, 2015, 38: 85
-
[23]
[23] Chae K J, Choi M J, Lee J W, Kim K Y, Kim I S. Bioresour Technol, 2009, 100: 3518
-
[24]
[24] Dryden S K, He Z, Ley R E, Angenent L T. Unpublished. http:// getentry.ddbj.nig.ac.jp/getentry/na/EF515697/?filetype=html
-
[25]
[25] Morita M, Malvankar N S, Franks A E, Summers Z M, Giloteaux L, Rotaru A E, Rotaru C, Vargas M, Lovley D R. Unpublished. http:// getentry.ddbj.nig.ac.jp/getentry/na/FR823540/?filetype=html
-
[26]
[26] Uria N, Mas J. Unpublished. http://getentry.ddbj.nig.ac.jp/ getentry/na/HE856389-HE856491/?filetype=html&limit=100
-
[27]
[27] Zhang X. Unpublished. http://getentry.ddbj.nig.ac.jp/getentry/ na/JQ724353/?filetype=html
-
[28]
[28] Ludvigsson M, Lindgren J, Tegenfeldt J. Electrochim Acta, 2000, 45: 2267
-
[29]
[29] Xu L, Wang J N, Meng Y, Li A M. Chin Chem Lett, 2012, 23: 105
-
[30]
[30] Di Noto V, Piga M, Giffin G A, Lavina S, Smotkin E S, Sanchez J Y, Iojoiu C. J Phys Chem C, 2012, 116: 1370
-
[31]
[31] Wu Y, Guo J, Yang W L, Wang C C, Fu S K. Polymer, 2006, 47: 5287
-
[32]
[32] Danilczuk M, Lin L, Schlick S, Hamrock S J, Schaberg M S. J Power Sources, 2011, 196: 8216
-
[33]
[33] Shin S J, Balabanovich A I, Kim H, Jeong J, Song J, Kim T K. J Power Sources, 2009, 191: 312
-
[34]
[34] Barbora L, Singh R, Shroti N, Verma A. Mater Chem Phys, 2010, 122: 211
-
[35]
[35] Belfer S, Fainchtain R, Purinson Y, Kedem O. J Membr Sci, 2000, 172: 113
-
[1]
-
-
-
[1]
Di An , Mingdong She , Ziyang Zhang , Ting Zhang , Miaomiao Xu , Jinjun Shao , Qian Shen , Xuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841
-
[2]
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
-
[3]
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
-
[4]
Linjing Li , Wenlai Xu , Jianyong Ning , Yaping Zhong , Chuyue Zhang , Jiane Zuo , Zhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243
-
[5]
Fangping Yang , Jin Shi , Yuansong Wei , Qing Gao , Jingrui Shen , Lichen Yin , Haoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746
-
[6]
Yiming Fang , Huimin Gao , Kaiting Cheng , Liang Bai , Zhengtong Li , Yadong Zhao , Xingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925
-
[7]
Haitao Yin , Liang Meng , Li Li , Jiamu Xiao , Longrui Liang , Nannan Huang , Yansong Shi , Angang Zhao , Jingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313
-
[8]
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
-
[9]
Yiqiao Chen , Ao Liu , Biwen Yang , Zhenzhen Li , Binggang Ye , Zhouyi Guo , Zhiming Liu , Haolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295
-
[10]
Deli Chen , Jiawen Li , Xudong Xu , Zhaocui Sun , Yun Yang , Minghui Xu , Hanqiao Liang , Junshan Yang , Hui Meng , Guoxu Ma , Jianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451
-
[11]
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
-
[12]
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
-
[13]
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200
-
[14]
Yang Liu , Leilei Zhang , Kaixuan Liu , Ling-Ling Wu , Hai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759
-
[15]
Zheyi Li , Xiaoyang Liang , Zitong Qiu , Zimeng Liu , Siyu Wang , Yue Zhou , Nan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592
-
[16]
Jisheng Liu , Junli Chen , Xifeng Zhang , Yin Wu , Xin Qi , Jie Wang , Xiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779
-
[17]
Chong Liu , Nanthi Bolan , Anushka Upamali Rajapaksha , Hailong Wang , Paramasivan Balasubramanian , Pengyan Zhang , Xuan Cuong Nguyen , Fayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960
-
[18]
Zhigang Zeng , Changzhou Liao , Lei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349
-
[19]
Xi Chen , Xue Zhang , Shuai Yang , Jie Wang , Tian Tang , Maling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021
-
[20]
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(249)
- HTML views(23)