Citation: Ye Yuan, Zhimiao Wang, Hualiang An, Wei Xue, Yanji Wang. Oxidative carbonylation of phenol with a Pd-O/CeO2-nanotubecatalyst[J]. Chinese Journal of Catalysis, ;2015, 36(7): 1142-1154. doi: 10.1016/S1872-2067(14)60312-0 shu

Oxidative carbonylation of phenol with a Pd-O/CeO2-nanotubecatalyst

  • Corresponding author: Wei Xue,  Yanji Wang, 
  • Received Date: 22 December 2014
    Available Online: 7 February 2015

    Fund Project: 国家自然科学基金(21236001, 21176056, 21106031) (21236001, 21176056, 21106031) 河北省高校百名优秀创新人才支持计划(II)(BR2-208) (II)(BR2-208) 河北省自然科学基金(B2015202228). (B2015202228)

  • CeO2 nanotubes (CeO2-NT) were synthesized using carbon nanotubes as template by a liquid phase deposition and hydrothermal method. X-ray diffraction, transmission electron microscopy, and N2 adsorption-desorption were used to characterize the CeO2-NT. The wall of CeO2-NT was composed of small interconnected nanocrystallites ranging from 4 to 9 nm in size. The specific surface area of CeO2-NT was 108.8 m2/g with an outer diameter of 25 nm and length > 300 nm. Supported Pd catalyst, Pd-O/CeO2-NT, was prepared using CeO2-NT as the support. Temperature-programmed reduction analysis showed that the surface oxygen on Pd-O/CeO2-NT could be reduced at low temperature, therefore it showed high activity in the reaction. Pd-O/CeO2-NT was used as the catalyst for the oxidative carbonylation of phenol. It has better activity and DPC selectivity than Pd-O/CeO2-P, which was prepared by supporting Pd on zero dimensional CeO2 particles. Under the optimized conditions, phenol conversion was 67.7% with 93.3% DPC selectivity with Pd-O/CeO2-NT. However, its catalytic activity decreased when the catalyst was used for the second time. This was attributed to the destruction of the tubular structure of Pd-O/CeO2-NT and Pd leaching during the reaction.
  • 加载中
    1. [1]

      [1] Wang Y J, Zhao X Q. Green Catalytic Chemical Process and Technology. Beijing: Chem Ind Press (王延吉, 赵新强. 绿色催化过程与工艺. 北京: 化学工业出版社), 2002. 160

    2. [2]

      [2] Gong J L, Ma X B, Wang S P. Appl Catal A, 2007, 316: 1

    3. [3]

      [3] Xue W, Teng Z, Wang Z M, Yuan Y, Zhang D S, Wang Y J (薛伟, 滕哲, 王志苗, 袁烨, 张东升, 王延吉). CN Patent 103611532 A. 2013

    4. [4]

      [4] Zhou W Q, Zhao X Q, Wang Y J, Zhang J Y. Appl Catal A, 2004, 260: 19

    5. [5]

      [5] Zhou X, Ge X, Tang R Z, Chen T, Wang G Y. Chin J Catal (周喜, 葛鑫, 唐荣芝, 陈彤, 王公应. 催化学报), 2014, 35: 481

    6. [6]

      [6] Hallgren J E, Lucas G M, Matthews R O. J Organomet Chem, 1981, 204: 135

    7. [7]

      [7] Vavasori A, Toniolo L. J Mol Catal A, 1999, 139: 109

    8. [8]

      [8] Goyal M, Nagahata R, Sugiyama J, Asai M, Ueda M, Takeuchi K. Catal Lett, 1998, 54: 29

    9. [9]

      [9] Linsen K J L, Libens J, Jacobs P A. Chem Commun, 2002: 2728

    10. [10]

      [10] Xue W, Zhang J C, Wang Y J, Zhao Q, Zhao X Q. J Mol Catal A, 2005, 232: 77

    11. [11]

      [11] Song H Y, Park E D, Lee J S. J Mol Catal A, 2000, 154: 243

    12. [12]

      [12] Ishii H, Takeuchi K, Asai M, Ueda M. Catal Commun, 2001, 2: 145

    13. [13]

      [13] Zhang G X, Wu Y X, Ma P S, Wu G W, Li D H. Chin J Catal (张光旭, 吴元欣, 马沛生, 吴广文, 李定或. 催化学报), 2002, 23: 130

    14. [14]

      [14] Kim W B, Park E D, Lee C W, Le J S. J Catal, 2003, 218: 334

    15. [15]

      [15] Fan G Z, Huang J, Li Z Q, Li T, Li G X. J Mol Catal A, 2007, 267: 34

    16. [16]

      [16] Lu W, Du Z P, Yuan H, Tian Q F, Wu Y X. Chin J Chem Eng, 2013, 21: 8

    17. [17]

      [17] Yang X J, Han J Y, Du Z P, Yuan H, Jin F, Wu Y X. Catal Commun, 2010, 11: 643

    18. [18]

      [18] Ronchin L, Vavasori A, Amadio E, Cavinato G, Toniolo L. J Mol Catal A, 2009, 298: 23

    19. [19]

      [19] Xue W, Zhang J C, Wang Y J, Zhao X Q, Zhao Q. Catal Commun, 2005, 6: 431

    20. [20]

      [20] Zhang Y L, Xiang S L, Wang G Q, Jiang H, Xiong C R. Catal Sci Technol, 2014, 4: 1055

    21. [21]

      [21] Wu M, Yuan H, Du Z P, Wu Y X. Appl Chem Ind (邬茂, 袁华, 杜治平, 吴元欣. 应用化工), 2008, 37: 990

    22. [22]

      [22] Wang Z M. [MS Dissertation]. Tianjin: Hebei Univ Technol (王志苗. [硕士学位论文]. 天津: 河北工业大学), 2012

    23. [23]

      [23] Ta N, Liu J Y, Shen W J. Chin J Catal (塔娜, 刘景月, 申文杰. 催化学报), 2013, 34: 838

    24. [24]

      [24] Li Y, Shen W J. Sci Sin Chim (李勇, 申文杰. 中国科学化学), 2012, 42: 376

    25. [25]

      [25] Liu L J, Cao Y, Sun W J, Yao Z J, Liu B, Gao F, Dong L. Catal Today, 2011, 175: 48

    26. [26]

      [26] Wu Z L, Li M J, Overbury S H. J Catal, 2012, 285: 61

    27. [27]

      [27] Wang S P, Zhao L F, Wang W, Zhao Y J, Zhang G L, Ma X B, Gong J L. Nanoscale, 2013, 5: 5582

    28. [28]

      [28] Pan C S, Zhang D S, Shi L Y, Fang J H. Eur J Inorg Chem, 2008: 2429

    29. [29]

      [29] Shan W J, Liu C, Guo H J, Yang L H, Wang X N, Feng Z C. Chin J Catal (单文娟, 刘畅, 郭红娟, 杨利华, 王晓楠, 冯兆池. 催化学报), 2011, 32: 1336

    30. [30]

      [30] Zhou K B, Yang Z Q, Yang S. Chem Mater, 2007, 19: 1215

    31. [31]

      [31] Zhang D S, Fu H X, Shi L Y, Fang J H, Li Q. J Solid State Chem, 2007, 180: 654

    32. [32]

      [32] Cargnello M, Doan-Nguyen V V T, Gordon T R, Diaz R E, Stach E A, Gorte R J, Fornasiero P, Nurray C B. Science, 2013, 341: 771

    33. [33]

      [33] Boronin A I, Slavinskaya E M, Danilova I G, Gulyaev R V, Amosov Y I, Kuznetsov P A, Polukhina I A, Koscheev S V, Zaikovskii V I, Noskov A S. Catal Today, 2009, 144: 201

    34. [34]

      [34] Tang Z R, Yin X, Zhang Y H, Zhang N, Xu Y J. Chin J Catal (唐紫蓉, 尹霞, 张燕辉, 张楠, 徐艺军. 催化学报), 2013, 34: 1123

    35. [35]

      [35] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquérol J, Siemieniewska T. Pure Appl Chem, 1985, 57: 603

    36. [36]

      [36] Yao H C, Yu Yao Y F. J Catal, 1984, 86: 254

    37. [37]

      [37] Li J, Ta N, Li Y, Shen W J. Chin J Catal (李娟, 塔娜, 李勇, 申文杰. 催化学报), 2008, 29: 823

    38. [38]

      [38] Shan W J, Dong X W, Ma N, Yao S Y, Feng Z C. Catal Lett, 2009, 131: 350

    39. [39]

      [39] Rao G R. Bull Mater Sci, 1999, 22: 89

    40. [40]

      [40] Zhu H Q, Qin Z F, Shan W J, Shen W J, Wang J G. J Catal, 2004, 225: 267

    41. [41]

      [41] Luo M F, Hou Z Y, Yuan X X, Zheng X M. Catal Lett, 1998, 50: 205

    42. [42]

      [42] Amorim C, Wang X D, Keane M A. Chin J Catal (催化学报), 2011, 32: 746

    43. [43]

      [43] Cargnello M, Montini T, Polizzi S, Wieder N L, Gorte R J, Graziani M, Fornasiero P. Dalton Trans, 2010, 39: 2122

    44. [44]

      [44] Meng L, Jia A P, Lu J Q, Luo L F, Huang W X, Luo M F. J Phys Chem C, 2011, 115: 19789

    45. [45]

      [45] Reddy B M, Katta L, Thrimurthulu G. Chem Mater, 2010, 22: 467

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    14. [14]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(0)
  • Abstract views(405)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return