Citation: Jinjing Li, Xiulian Pan, Xinhe Bao. Direct conversion of syngas into hydrocarbons over a core-shell Cr-Zn@SiO2@SAPO-34 catalyst[J]. Chinese Journal of Catalysis, ;2015, 36(7): 1131-1135. doi: 10.1016/S1872-2067(14)60297-7 shu

Direct conversion of syngas into hydrocarbons over a core-shell Cr-Zn@SiO2@SAPO-34 catalyst

  • Corresponding author: Xiulian Pan, 
  • Received Date: 8 December 2014
    Available Online: 22 January 2015

    Fund Project: 中国科学院大连化学物理研究所甲醇转化与煤代油新技术基础研究专项基金(DICP M201308). (DICP M201308)

  • Direct conversion of syngas into hydrocarbons with high selectivity remains a challenge. Herein, we report the synthesis of a core-shell-structured catalyst constituting Cr-Zn oxide as the core and SAPO-34 as the shell for the conversion of syngas into hydrocarbons with high selectivity. A SiO2 layer was sandwiched between the core and the shell to prevent damage to the core during shell synthesis. Furthermore, the intermediate SiO2 layer acted as a Si source for the formation of the shell. The prepared catalyst displayed considerably higher selectivity toward the production of C2-C4 hydrocarbons (66.9%) than that of methanol and methane. The findings show the potential of the prepared core-shell-structured catalyst in the one-step production of hydrocarbons, such as liquefied petroleum gas, from syngas. However, further optimization of the catalyst is necessary to achieve higher performance.
  • 加载中
    1. [1]

      [1] Torres Galvis H M, de Jong K P. ACS Catal, 2013, 3: 2130

    2. [2]

      [2] Wender I. Fuel Process Technol, 1996, 48: 189

    3. [3]

      [3] Qian B Z. Fine Chem Ind Raw Mater Intermed (钱伯章. 精细化工原料及中间体), 2010, (1): 10

    4. [4]

      [4] Prieto G, Shakeri M, de Jong K P, de Jongh P E. ACS Nano, 2014, 8: 2522

    5. [5]

      [5] Polarz S, Neues F, van den Berg M W E, Grunert W, Khodeir L. J Am Chem Soc, 2005, 127: 12028

    6. [6]

      [6] Bradford M C J, Konduru M V, Fuentes D X. Fuel Process Technol, 2003, 83: 11

    7. [7]

      [7] Zhang Q W, Li X H, Fujimoto K. Appl Catal A, 2006, 309: 28

    8. [8]

      [8] Liu G Y, Tian P, Li J Z, Zhang D Z, Zhou F, Liu Z M. Microporous Mesoporous Mater, 2008, 111: 143

    9. [9]

      [9] Liu G Y, Tian P, Liu Z M. Prog Chem (刘广宇, 田鹏, 刘中民. 化学进展), 2010, 22: 1531

    10. [10]

      [10] Lebarbier Dagle V M, Dagle R A, Li J J, Deshmane C, Taylor C E, Bao X H, Wang Y. Ind Eng Chem Res, 2014, 53: 13928

    11. [11]

      [11] Erena J, Arandes J M, Bilbao J, Aguayo A T, de Lasa H I. Ind Eng Chem Res, 1998, 37: 1211

    12. [12]

      [12] Erena J, Arandes J M, Bilbao J, Olazar M, de Lasa H I. J Chem Technol Biotechnol, 1998, 72: 190

    13. [13]

      [13] Jin Y Z, Yang R Q, Mori Y, Sun J, Taguchi A, Yoneyama Y, Abe T, Tsubaki N. Appl Catal A, 2013, 456: 75

    14. [14]

      [14] Khan E A, Hu E P, Lai Z P. Microporous Mesoporous Mater, 2009, 118: 210

    15. [15]

      [15] Bao J, Yang G H, Okada C, Yoneyama Y, Tsubaki N. Appl Catal A, 2011, 394: 195

    16. [16]

      [16] Yang G H, Tsubaki N, Shamoto J, Yoneyama Y, Zhang Y. J Am Chem Soc, 2010, 132: 8129

    17. [17]

      [17] Yang G H, Thongkam M, Vitidsant T, Yoneyama Y, Tan Y S, Tsubaki N. Catal Today, 2011, 171: 229

    18. [18]

      [18] Pinkaew K, Yang G H, Vitidsant T, Jin Y Z, Zeng C Y, Yoneyama Y, Tsubaki N. Fuel, 2013, 111: 727

    19. [19]

      [19] Chen Y P, Xu Y M, Cheng D G, Chen Y C, Chen F Q, Lu X Y, Huang Y P, Ni S B. Pure Appl Chem, 2014, 86: 775

    20. [20]

      [20] Chen Y P, Xu Y M, Cheng D G, Chen Y C, Chen F Q, Lu X Y, Huang Y P, Ni S B. J Chem Technol Biotechnol, 2015, 90: 415

    21. [21]

      [21] Valizadeh B, Askari S, Halladj R, Haghmoradi A. Synth React Inorg Met-Org Nano-Metal Chem, 2014, 44: 79

    22. [22]

      [22] Zhang Q W, Li X H, Asami K, Asaoka S, Fujimoto K. Fuel Process Technol, 2004, 85: 1139

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    11. [11]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    17. [17]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    20. [20]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(0)
  • Abstract views(300)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return