Citation: Hongyan Shang, Yun Wang, Yajuan Cui, Ruimei Fang, Wei Hu, Maochu Gong, Yaoqiang Chen. Catalytic performance of Pt-Rh/CeZrYLa+LaAl with stoichiometric natural gas vehicles emissions[J]. Chinese Journal of Catalysis, ;2015, 36(3): 290-298. doi: 10.1016/S1872-2067(14)60270-9 shu

Catalytic performance of Pt-Rh/CeZrYLa+LaAl with stoichiometric natural gas vehicles emissions

  • Corresponding author: Yaoqiang Chen, 
  • Received Date: 19 October 2014
    Available Online: 12 December 2014

    Fund Project: 国家自然科学基金(21173153) (21173153) 四川省科技厅科技支撑项目(2011GZ0035). (2011GZ0035)

  • The composite support CeZrYLa+LaAl was prepared by a co-precipitation method, and Pt-Rh bimetallic catalysts were fabricated on this support using different preparation procedures. The catalytic activities of these materials were tested in a gas mixture simulating the exhaust from a stoichiometric natural gas vehicle. The as-prepared catalysts were also characterized by X-ray photoelectron spectroscopy, X-ray diffraction, N2 adsorption-desorption and H2-temperature-programmed reduction. It was found that the order of activities for CH4, CO and NO conversion was Cat3 ≈ Cat2 > Cat1, where Cat3 had the lowest light-off temperature (T50) for CO (114 ℃) and NO (149 ℃), the lowest complete conversion temperature (T90) for CH4 (398 ℃) and CO (179 ℃), and the lowest ΔT (T90-T50) for CH4 (34 ℃) and CO (65 ℃). Cat2 showed the lowest T50 for CH4 (342 ℃), the lowest T90 for NO (174 ℃), and the lowest ΔT for NO (17 ℃). Cat1 had the highest T50 and T90 and the largest ΔT out of all three catalysts. Indicating that Pt-Rh bimetallic catalysts (Cat2 and Cat3) prepared by physically mixing Pt and Rh powders exhibited much better catalytic activity than those (Cat1) prepared by co-impregnation, since homogeneous Pt and Rh sites made a significant contribution to CH4/CO/NO conversions. In contrast, strong Pt-Rh interactions in the co-impregnation materials affected the oxidation states of Pt, and the Pt-enriched surface blocked active Rh sites. Moreover, Cat3 was prepared by adding additives (La3+, Zr4+ and Ba2+) into the physically mixed Pt-Rh catalysts. XRD results demonstrated that the additive cation (Zr4+) was incorporated into the CeO2-ZrO2 lattice, thus creating a higher concentration of defects and improving the O2-mobility. XPS results showed that the Cat3 had the highest Ce3+/Ce ratio, suggesting the presence of a significant quantity of oxygen vacancies and cerium in the Ce3+ state. All of these further promoted the three-way catalytic activity and widened the air-to-fuel working-window.
  • 加载中
    1. [1]

      [1] Bounechada D, Groppi G, Forzatti P, Kallinen K, Kinnunen T. Appl Catal B, 2012, 119-120: 91

    2. [2]

      [2] Choudhary T V, Banerjee S, Choudhary V R. Appl Catal A, 2002, 234: 1

    3. [3]

      [3] Tabata T, Baba K, Kawshima H, Kitade K, Tanaka T, Kokitsu M, Otsuka H, Okada O. Sci Tech Catal, 1995, 92: 453

    4. [4]

      [4] Klingstedt F, Neyestanaki A K, Byggningsbacka R, Lindfors L E, Lundén M, Petersson M, Tengström P, Ollonqvist T, Väyrynen J. Appl Catal A, 2001, 209: 301

    5. [5]

      [5] Guo J X, Wu D D, Zhang L, Gong M C, Zhao M, Chen Y Q. J Alloy Compd, 2008, 460: 485

    6. [6]

      [6] Wang S N, Cui Y J, Lan L, Shi Z H, Zhao M, Gong M C, Fang R M, Chen S J, Chen Y Q. Chin J Catal (王苏宁, 崔亚娟, 兰丽, 史忠华, 赵明, 龚茂初, 方瑞梅, 陈思洁, 陈耀强. 催化学报), 2014, 35: 1482

    7. [7]

      [7] Guo J X G, Shi Z H, Wu D D, Yin H Q, Gong M C, Chen Y Q. Appl Surf Sci, 2013, 273: 527

    8. [8]

      [8] Oh S H, Mitchell P J, Siewert R M. J Catal, 1991, 132: 287

    9. [9]

      [9] Burch R, Loader P K. Appl Catal B, 1994, 5: 149

    10. [10]

      [10] Hu Z, Allen F M, Wan C Z, Heck R M, Steger J J, Lakis R E, Lyman C E. J Catal, 1998, 174: 13

    11. [11]

      [11] Fang R M, Cui Y J, Chen S J, Shang H Y, Shi Z H, Gong M C, Chen Y Q. Chin J Catal (方瑞梅, 崔亚娟, 陈思洁, 尚鸿燕, 史忠华, 龚茂初, 陈耀强. 催化学报), 2015, 36: 229

    12. [12]

      [12] Wang Y, Shang H Y, Xu H D, Gong M C, Chen Y Q. Chin J Catal (王云, 尚鸿燕, 徐海迪, 龚茂初, 陈耀强. 催化学报), 2014, 35: 1157

    13. [13]

      [13] Wang Y, Xu H D, Shang H Y, Gong M C, Chen Y Q. J Energy Chem, 2014, 23: 461

    14. [14]

      [14] Zhang X Y, Long E Y, Li Y L, Zhang L J, Guo J X, Gong M C, Chen Y Q. J Mol Catal A, 2009, 308: 73

    15. [15]

      [15] Li Y L, Zhang X Y, Long E Y, Li H M, Wu D D, Cai L, Gong M C, Chen Y Q. J Nat Gas Chem, 2009, 18: 415

    16. [16]

      [16] Yuan S H, Wang Y J, Shi Z H, Zhao M, Gong M C, Liu Z C, Chen Q Z, Chen Y Q. Chin J Catal (袁书华, 王永军, 史忠华, 赵明, 龚茂初, 刘忠长, 陈启章, 陈耀强. 催化学报), 2007, 28: 401

    17. [17]

      [17] Granger P, Lecomte J J, Dathy C, Leclercq L, Leclercq G. J Catal, 1998, 175: 194

    18. [18]

      [18] Koltsakis G C, Stamatelos A M. Prog Energy Combust Sci, 1997, 23: 1

    19. [19]

      [19] Papavasiliou A, Tsetsekou A, Matsouka V, Konsolakis M, Yentekakis I V. Appl Catal A, 2010, 382: 73

    20. [20]

      [20] Wan J, Ran R, Li M, Wu X D, Weng D. J Mol Catal A, 2014, 383-384: 194

    21. [21]

      [21] Vlaic G, Di Monte R, Fornasiero P, Fonda E, Kašpar J, Graziani M. J Catal, 1999, 182: 378

    22. [22]

      [22] Bozo C, Gaillard F, Guilhaume N. Appl Catal A, 2001, 220: 69

    23. [23]

      [23] Wang J, Wen J, Shen M Q. J Phys Chem C, 2008, 112: 5113

    24. [24]

      [24] Wu X D, Fan J, Ran R, Weng D. Chem Eng J, 2005, 109: 133

    25. [25]

      [25] Rodriguez J A, Wang X, Liu G, Hanson J C, Hrbek J, Peden C H F, Iglesias-Juez A, Fernández-García M. J Mol Catal A, 2005, 228: 11

    26. [26]

      [26] Trovarelli A, Zamar F, Llorca J, de Leitenburg C, Dolcetti G, Kiss J T. J Catal, 1997, 169: 490

    27. [27]

      [27] He H, Dai H X, Au C T. Catal Today, 2004, 90: 245

    28. [28]

      [28] Xu H D, Zhang Q L, Qiu C T, Lin T, Gong M C, Chen Y Q. Chem Eng Sci, 2012, 76: 120

    29. [29]

      [29] Xu H D, Qiu C T, Zhang Q L, Lin T, Gong M C, Chen Y Q. Acta Phys-Chim Sin (徐海迪, 邱春天, 张秋林, 林涛, 龚茂初, 陈耀强. 物理化学学报), 2010, 26: 2449

    30. [30]

      [30] Kašpar J, Fornasiero P, Graziani M. Catal Today, 1999, 50: 285

    31. [31]

      [31] Ayastuy J L, González-Marcos M P, Gil-Rodríguez A, González- Velasco J R, Gutiérrez-Ortiz M A. Catal Today, 2006, 116: 391

    32. [32]

      [32] Passos F B, de Oliveira E R, Mattos L V, Noronha F B. Catal Today, 2005, 101: 23

    33. [33]

      [33] Fally F, Perrichon V, Vidal H, Kaspar J, Blanco G, Pintado J M, Bernal S, Colon G, Daturi M, Lavalley J N C. Catal Today, 2000, 59: 373

    34. [34]

      [34] Dou D, Liu D J, Williamson W B, Kharas K C, Robota H J. Appl Catal B, 2001, 30: 11

    35. [35]

      [35] Samoila P, Boutzeloit M, Especel C, Epron F, Marécot P. J Catal, 2010, 276: 237

    36. [36]

      [36] Fornasiero P, Ranga Rao G, Kaˇspar J, L'Erario F, Graziani M. J Catal, 1998, 175: 269

    37. [37]

      [37] Shang H Y, Wang Y, Gong M C, Chen Y Q. J Nat Gas Chem, 2012, 21: 393

    38. [38]

      [38] Sekizawa K, Widjaja H, Maeda S, Ozawa Y, Eguchi K. Catal Today, 2000, 59: 69

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    3. [3]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    17. [17]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    18. [18]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(211)
  • Abstract views(763)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return