Citation: Lin Ge, Chengjie Zang, Feng Chen. The enhanced Fenton-like catalytic performance of PdO/CeO2 for the degradation of acid orange 7 and salicylic acid[J]. Chinese Journal of Catalysis, ;2015, 36(3): 314-321. doi: 10.1016/S1872-2067(14)60261-8 shu

The enhanced Fenton-like catalytic performance of PdO/CeO2 for the degradation of acid orange 7 and salicylic acid

  • Received Date: 21 October 2014
    Available Online: 1 December 2014

    Fund Project: 国家自然科学基金(21177039) (21177039) 上海市教委科研创新项目(13ZZ042). (13ZZ042)

  • A PdO/CeO2 catalyst was prepared by deposition-precipitation method and characterized with X-ray diffraction, high-resolution transmission electron microscopy, N2 adsorption-desorption, X-ray photoelectron spectroscopy and Raman spectroscopy. The results show that the Pd is presented as Pd2+ in the catalyst. The interaction between the deposited PdO and CeO2 increases the Ce3+ content. The catalytic activity of PdO/CeO2 was tested in the heterogeneous Fenton-like degradation of acid orange 7 (AO7) and salicylic acid (SA), both in the dark and under visible irradiation. Deposition of PdO accelerates the Fen-ton-like degradation of SA, which reaches a maximum at 1.0 atom% PdO loading. A dye sensitization effect was seen with AO7 under visible irradiation. Dye sensitization promotes the regeneration of Ce3+ by interfacial peroxides species through interfacial electron injection. Consequently, the combined effects of PdO loading and visible light irradiating enhanced the Fenton-like activity to a reaction rate constant of 3.90 h-1 for the 1.0 PdO/CeO2, a ca. 50-fold improvement.
  • 加载中
    1. [1]

      [1] Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G. Catal Today, 1999, 50: 353

    2. [2]

      [2] Sun C W, Li H, Chen L Q. Energy Environ Sci, 2012, 5: 8475

    3. [3]

      [3] Besson M, Descorme C, Bernardi M, Gallezot P, di Gregorio F, Grosjean N, Pham Minh D, Pintar A. Environ Technol, 2010, 31: 1441

    4. [4]

      [4] Singh P, Hegde M S. Chem Mater, 2009, 21: 3337

    5. [5]

      [5] Nolan M. J Phys Chem C, 2011, 115: 6671

    6. [6]

      [6] Tanaka A, Hashimoto K, Kominami H. J Am Chem Soc, 2012, 134: 14526

    7. [7]

      [7] Hinokuma S, Fujii H, Okamoto M, Ikeue K, Machida M. Chem Mater, 2010, 22: 6183

    8. [8]

      [8] Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S. J Am Chem Soc, 2012, 134: 10251

    9. [9]

      [9] Gnanamani M K, Jacobs G, Shafer W D, Ribeiro M C, Pendyala V R R, Ma W P, Davis B H. Catal Commun, 2012, 25: 12

    10. [10]

      [10] Guzman J, Carrettin S, Corma A. J Am Chem Soc, 2005, 127: 3286

    11. [11]

      [11] Zhou H P, Wu H S, Shen J, Yin A X, Sun L D, Yan C H. J Am Chem Soc, 2010, 132: 4998

    12. [12]

      [12] Wieder N L, Cargnello M, Bakhmutsky K, Montini T, Fornasiero P, Gorte R J. J Phys Chem C, 2011, 115: 915

    13. [13]

      [13] Shen W J, Ichihashi Y, Okumura M, Matsumura Y. Catal Lett, 2000, 64: 23

    14. [14]

      [14] Meng L, Jia A P, Lu J Q, Luo L F, Huang W X, Luo M F. J Phys Chem C, 2011, 115: 19789

    15. [15]

      [15] Colussi S, Gayen A, Camellone F M, Boaro M, Llorca J, Fabris S, Trovarelli A. Angew Chem Int Ed, 2009, 48: 8481

    16. [16]

      [16] Heckert E G, Seal S, Self W T. Environ Sci Technol, 2008, 42: 5014

    17. [17]

      [17] Ji P F, Tian B Z, Chen F, Zhang J L. Environ Technol, 2012, 33: 467

    18. [18]

      [18] Cai W D, Chen F, Shen X X, Chen L J, Zhang J L. Appl Catal B, 2010, 101: 160

    19. [19]

      [19] Chen F, Shen X X, Wang Y C, Zhang J L. Appl Catal B, 2012, 121: 223

    20. [20]

      [20] Wang Y C, Shen X X, Chen F. J Mol Catal A, 2014, 381: 38

    21. [21]

      [21] Ji P F, Zhang J L, Chen F, Anpo M. Appl Catal B, 2009, 85: 148

    22. [22]

      [22] Chen F, Shen X X. Appl Catal B, 2011, 105: 252

    23. [23]

      [23] Ge L, Chen T, Liu Z Q, Chen F. Catal Today, 2014, 224: 209

    24. [24]

      [24] Xiao L H, Sun K P, Xu X L, Li X N. Catal Commun, 2005, 6: 796

    25. [25]

      [25] Carrettin S, Concepción P, Corma A, López Nieto J M, Puntes V F. Angew Chem Int Ed, 2004, 43: 2538

    26. [26]

      [26] Lee Y, He G, Akey A J, Si R, Flytzani-Stephanopoulos M, Herman I P. J Am Chem Soc, 2011, 133: 12952

    27. [27]

      [27] McBride J R, Hass K C, Poindexter B D, Weber W H. J Appl Phys, 1994, 76: 2435

    28. [28]

      [28] Orge C A, Órfâo J J M, Pereira M F R, Duarte de Farias A M, Neto R C R, Fraga M A. Appl Catal B, 2011, 103: 190

    29. [29]

      [29] Pushkarev V V, Kovalchuk V I, d'Itri J L. J Phys Chem B, 2004, 108: 5341

    30. [30]

      [30] Bêche E, Charvin P, Perarnau D, Abanades S, Flamant G. Surf Interf Anal, 2008, 40: 264

    31. [31]

      [31] Holgado J P, Alvarez R, Munuera G. Appl Surf Sci, 2000, 161: 301

    32. [32]

      [32] Tsunekawa S, Fukuda T, Kasuya A. Appl Surf Sci, 2000, 457: L437

    33. [33]

      [33] Korsvik C, Patil S, Seal S, Self W T. Chem Commun, 2007: 1056

    34. [34]

      [34] Watanabe S, Ma X, Song C. J Phys Chem C, 2009, 113: 14249

    35. [35]

      [35] Ji P F, Wang L Z, Chen F, Zhang J L. ChemCatChem, 2010, 2: 1552

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    15. [15]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(205)
  • Abstract views(879)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return